Skip to main content
Log in

Analysis of microstructure, chemical state and electrical features of Ti/WO3/p-InP heterojunction with a tungsten oxide insulating layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper examined the fabrication, structural, chemical and electrical features of Ti/WO3/p-InP heterojunction (HJ). AFM, FESEM and XPS analyses were accomplished to investigate the structural and chemical possessions of the tungsten oxide. The electrical and current transport properties of Ti/p-InP Schottky diode (SD) and HJ were investigated by using the current–voltage (I–V) technique. The HJ exhibits lesser reverse leakage current and enhanced barrier height than the SD. The barrier height (Φb) and ideality factor (n) values of SD and HJ are found to be 0.73 eV, 2.27 and 0.83 eV, 1.72, respectively. The inclusion of the WO3 layer between Ti and p-InP considerably improved the Φb of SD. The Φb and n were determined using multiple methods including I–V, Cheung’s function and Ψs-V plot, the extracted Φb and n values were found to be consistent with one another, indicating the stability and validity of the results. Results revealed that the HJ shows improved Φb and n values compared to the SD. The density of states (NSS) of the HJ was found to be lower than the SD, specifying the effectiveness of the WO3 insulating layer in reducing NSS. Both SD and HJ exhibited Poole–Frenkel emission as the prevailing mechanism in the reverse current. These findings suggest that the WO3 insulating materials have the potential to develop HJ devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data of this study are available from the corresponding author upon reasonable request.

References

  1. P. Viktorovitchi, P. Louis, M.P. Besland, A. Chovet, Electrical characterization of metal-oxide-InP tunnel diodes based on current-voltage, admittance and low frequency noise measurements. Solid State Electron 38, 1035–1043 (1995)

    Google Scholar 

  2. T. Enoki, H. Yokoyama, Y. Umeda, T. Otsuji, Ultrahigh-speed integrated circuits using InP-based HEMTs. Jpn. J. Appl. Phys. 37, 1359–1364 (1998)

    CAS  Google Scholar 

  3. A. Singh, K.C. Reinhardt, W.A. Anderson, Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions. J. Appl. Phys. 68, 3475–3483 (1990)

    CAS  Google Scholar 

  4. S. Ashajyothi, V. Rajagopal Reddy, Influence of tin oxide (SnO2) interlayer on the electrical and reverse current conduction mechanism of Au/n-InP Schottky junction and its microstructural properties. Thin Solid Films 740, 139001 (2021)

    CAS  Google Scholar 

  5. H. Kim, Capacitance-voltage (C-V) characteristics of Cu/n-type InP Schottky diodes. Trans. Electric. Electron. Mater. 17, 293–296 (2016)

    Google Scholar 

  6. T. Sugino, H. Ito, J. Shirafuji, Barrier height enhancement of InP Schottky junctions by treatment with photo decomposed with PH3. Electron. Lett. 26, 1750–1751 (1990)

    Google Scholar 

  7. M.J. Cardwell, R.F. Peart, Measurement of carrier-concentration profiles in epitaxial indium phosphide. Electron. Lett. 9, 88–89 (1973)

    CAS  Google Scholar 

  8. M. Ghaemi-moghadam, A. Hasanzadeh, A. Rahmati, Charge transfer plasmon coupled surface photosensing in ZnO nanorods-Au array hetero-nanostructures. Opt. Lasers Eng. 137, 106384 (2021)

    Google Scholar 

  9. A. Farokhipour, A. Rahmati, M. Khanzadeh, Dual functionality of surface plasmon resonance and barrier layer on the photosensing and optical nonlinearity of ZnO nanorod arrays. RSC Adv. 24, 22928–22938 (2022)

    CAS  Google Scholar 

  10. M. Raja, J. Chandrasekaran, M. Balaji, B. Janarthanan, Impact of annealing treatment on structural and dc electrical properties of spin coated tungsten trioxide thin film for Si/WO3/Ag junction diode. Mater. Sci. Semicond. Process. 56, 145–154 (2016)

    CAS  Google Scholar 

  11. S. Li, Z. Yao, J. Zhou, R. Zhang, H. Shen, Fabrication and characterization of WO3 thin films on silicon surface by thermal evaporation. Mater. Lett. 195, 213–216 (2017)

    CAS  Google Scholar 

  12. Y. Liua, W.M. Tang, P.T. Lai, A comparative study of Hf and Ta incorporations in the dielectric of Pd-WO3-SiC Schottky-diode hydrogen sensor. Sens. Actuators B: Chem. 259, 725–729 (2018)

    Google Scholar 

  13. R. Marnadu, J. Chandrasekaran, P. Vivek, V. Balasubramani, S. Maruthamuthu, Impact of phase transformation in WO3 thin films at higher temperature and its compelling interfacial role in Cu/WO3/p-Si structured Schottky barrier diodes. Z. Phys. Chem. 234, 355–379 (2020)

    CAS  Google Scholar 

  14. G. Adilakshmi, A. Sivasankar Reddy, P. Sreedhara Reddy, Ch. Seshendra Reddy, Electron beam evaporated nanostructure WO3 films for gas sensor application. Mater. Sci. Eng. B 273, 115421 (2021)

    CAS  Google Scholar 

  15. A.F. Qasrawi, Rana B. Daragme, Yb/WO3/Yb back-to-back Schottky barriers designed as voltage-controlled rectifiers and as microwave resonators. J. Ovonic Res. 18, 253–258 (2022)

    CAS  Google Scholar 

  16. S. Mahato, J. Puigdollers, Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer. Phys. B: Condens. Matter. 530, 327–335 (2018)

    CAS  Google Scholar 

  17. T. Gaewdang, Ng. Wongcharoen, Temperature-dependent electrical transport characteristics of p-SnS/n-WO3: Sb heterojunction diode. IOP Conf. Ser.: Mater. Sci. Eng. 383, 012006 (2018)

    Google Scholar 

  18. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, V. Balasubramani, Impact of Zr content on multiphase zirconium–tungsten oxide (Zr–WOx) films and its MIS structure of Cu/Zr–WOx/p-Si Schottky barrier diodes. J. Mater. Sci.: Mater Electron. 29, 2618–2627 (2018)

    CAS  Google Scholar 

  19. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D: Appl. Phys. 4, 1589–1601 (1971)

    CAS  Google Scholar 

  20. R. Senthikumar, G. Ravi, C. Sekar, M. Arivanandhan, M. Navaneethan, Y. Hayakawa, Determination of gas sensing properties of thermally evaporated WO3 nanostructures. J Mater. Sci.: Mater Electron. 26, 1389–1394 (2015)

    Google Scholar 

  21. X. Huang, Z. Xie, K. Li, Q. Chen, Y. Chen, F. Gong, Thermal stability of CrWN glass molding coatings after vacuum annealing. Coatings 10, 198 (2020)

    CAS  Google Scholar 

  22. F.A. El Diwany, T. Al Najjar, N.K. Allam, E.N. El Sawy, Tungsten oxide/fullerene-based nanocomposites as electrocatalysts and parasitic reactions inhibitors for VO2+/VO2+ in mixed-acids. Sci. Rep. 12, 14348 (2022)

    Google Scholar 

  23. A. Mozalev, M. Bendova, F. Gispert-Guirado, Z. Pytlicek, E. Llobet, Metal-substrate-supported tungsten-oxide nanoarrays via porous-alumina-assisted anodization: from nanocolumns to nano capsules and nanotube. J. Mater. Chem. A 4, 8219–8232 (2016)

    CAS  Google Scholar 

  24. J. Bao, S. Guo, J. Gao, T. Hu, L. Yang, C. Liu, J. Peng, C. Jiang, Synthesis of Ag2CO3/Bi2WO6 heterojunctions with enhanced photocatalytic activity and cycling stability. RSC Adv. 5, 97195–97204 (2015)

    CAS  Google Scholar 

  25. Palash Jyoti Boruah, Rakesh Ruchel Khanikar, H. Bailung, Synthesis and characterization of oxygen vacancy induced narrow bandgap tungsten oxide (WO3-x) nanoparticles by plasma discharge in liquid and its photocatalytic activity. Plasma Chem. Plasma Process 40, 1019–1036 (2020)

    CAS  Google Scholar 

  26. L. Yang, T. Wang, Y. Zou, H.L. Lu, Band offsets and interfacial properties of HfAlO gate dielectric grown on InP by atomic layer deposition. Nanoscale Res. Lett. 12, 339 (2017)

    Google Scholar 

  27. H.L. Lu, Y. Terada, Y. Shimogaki, Y. Nakano, M. Sugiyama, In situ passivation of InP surface using H2S during metal organic vapor phase epitaxy. Appl. Phys. Lett. 95, 152103 (2009)

    Google Scholar 

  28. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)

    Google Scholar 

  29. Y. Liu, J. Yu, P.T. Lai, Investigation of WO3/ZnO thin-film heterojunction-based Schottky diodes for H2 gas sensing. Int. J. Hydrogen Energy 39, 10313–10319 (2014)

    CAS  Google Scholar 

  30. B. Gowtham, V. Ponnuswamy, J. Chandrasekaran, V. Balasubramani, R. Suresh, G. Pradeesh, S. Ramanathan, Effect of surface modification of WO3 nanostructures on the performance for p-Si/n-WO3 structure diodes. Inorg. Chem. Commun. 130, 108695 (2021)

    CAS  Google Scholar 

  31. G. Henry Thomas, A. Ashok Kumar, V. Rajagopal Reddy, V. Janardhanam, Chel-Jong. Choi, On the current conduction mechanisms of WO3/n-Ge Schottky interfaces. Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.01.363

    Article  Google Scholar 

  32. S. Altındal, S. Karadeniz, N. Tugluoglu, A. Tataroglu, The role of interface states and Series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes. Solid State Electron. 47, 1847–1854 (2003)

    Google Scholar 

  33. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)

    CAS  Google Scholar 

  34. P.P. Thapaswini, R. Padma, N. Balaram, B. Bindu, V. Rajagopal Reddy, Modification of electrical properties of Au/n-type InP Schottky diode with a high-k Ba0.6Sr0.4TiO3 interlayer. Superlattices Microstruct. 93, 82–91 (2016)

    CAS  Google Scholar 

  35. T. Chot, A modified forward I–U plot for Schottky diodes with high series resistance. Phys. Status Solidi A 66, k43–k45 (1981)

    Google Scholar 

  36. V. Rajagopal Reddy, C.V. Prasad, V. Janardhanam, C.J. Choi, Electrical and carrier transport properties of Ti/α-amylase/p-InP MPS junction with a α-amylase polymer interlayer. J. Mater. Sci.: Mater Electron 32, 8092–8105 (2021)

    Google Scholar 

  37. H. Akther, A.H. Bhuiyan, Space charge limited conduction in plasma polymerized N, N,3,5 tetra methylaniline thin films. Thin Solid Films 488, 93–97 (2005)

    CAS  Google Scholar 

  38. P. Chattopadhyay, A new technique for the determination of barrier height of Schottky barrier diodes. Solid State Electron. 38, 739–741 (1995)

    CAS  Google Scholar 

  39. S.-J. Wang, M.-C. Wang, S.-F. Chen, Y.-H. Li, T.-S. Shen, H.-Y. Bor, C.-N. Wei, Electrical and physical characteristics of WO3/Ag/WO3 sandwich structure fabricated with magnetic-control sputtering metrology. Sensors 18, 2803 (2018)

    Google Scholar 

  40. N. Balaram, V. Rajagopal Reddy, P.R. Sekhar Reddy, V. Janardhanam, Chel-Jong. Choi, Microstructural, chemical states and electrical properties of Au/CuO/n-InP heterojunction with a cupric oxide interlayer. Vacuum 152, 15–24 (2018)

    CAS  Google Scholar 

  41. D.K. Schroder, Semiconductor material and device characterization, 3rd edn. (Wiley, New Jersey, 2006)

    Google Scholar 

  42. F.A. Padovani, R. Stratton, Field and thermionic-filed emission in Schottky barriers. Solid-State Electron. 9, 695–707 (1966)

    Article  Google Scholar 

  43. V. Rajagopal Reddy, P.R. Sekhar Reddy, I. Neelakanta Reddy, Chel-Jong. Choi, Microstructural, electrical and carrier transport properties of Au/NiO/n-GaN heterojunction with a nickel oxide interlayer. RSC Adv. 6, 105761–105770 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Materials/Parts Technology Development Program (20022480) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). S. Ashajyothi is also highly grateful to the University Grant Commission (UGC), New Delhi for providing financial assistance in the form of CSIR-UGC NET (RGF) to purse a PhD programme.

Author information

Authors and Affiliations

Authors

Contributions

Ashajyothi: investigation, methodology, writing-original draft preparation, Rajagopal Reddy: conceptualization, data curation, formal analysis, validation. Chel-Jong Choi: software, resource, writing-reviewing and editing.

Corresponding authors

Correspondence to V. Rajagopal Reddy or Chel-Jong Choi.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest or competing interest about this work with anybody.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashajyothi, S., Reddy, V.R. & Choi, CJ. Analysis of microstructure, chemical state and electrical features of Ti/WO3/p-InP heterojunction with a tungsten oxide insulating layer. J Mater Sci: Mater Electron 34, 1482 (2023). https://doi.org/10.1007/s10854-023-10893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10893-x

Navigation