Skip to main content
Log in

Synthesis and characterization of power efficient triboelectric nanogenerator based on contact-separation mode using spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, a novel triboelectric nanogenerator (TENG) based on fluorine tin oxide (FTO) as substrate, metallic copper (Cu), and Polydimethyl siloxane (PDMS) as transparent and flexible polymer materials with spray pyrolysis of gold nanoparticles (AuNPs) has been synthesized and characterized having dimensions of 1.5 × 1.5 cm. The spherical shaped synthesized AuNPs have been observed within the morphological images. The x-ray diffraction pattern of the prepared material shows an accurate diffraction peaks at 2theta values indicating the presence of mixed phases of FTO, Cu, AuNPs, and PDMS which are in excellent agreement with the previously mentioned 2theta values in the literature. Further, the energy dispersive spectroscopy (EDS) analysis confirms the presence of Cu, gold (Au), oxygen (O), tin (Sn), carbon (C) and silicon (Si) materials within the synthesized TENG. Finally, the synthesized PDMS-based TENG produces maximum AC output voltage and current up to ~ 56 V and ~ 18mA, respectively with very high transmittance of 92.85% along with a transferred electric charge of ~ 18nC, current density of ~ 8 mA/cm2, an output power of ~ 1 W, and a surface power density of ~ 448mW/cm2 with resistance of 3 KΩ. The TENG device is further connected with a bridge-type rectifier circuit to glow LEDs as well as serve as a platform for flexible and wearable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data produced during the experiments are available within the manuscript.

References

  1. T.C. Hou, Y. Yang, H. Zhang, J. Chen, L.J. Chen, Z.L. Wang, Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy. 2(5), 856–862 (2013). https://doi.org/10.1016/j.nanoen.2013.03.001

    Article  CAS  Google Scholar 

  2. G. Zhu, J. Chen, Y. Liu, P. Bai, Y.S. Zhou, Q. Jing, C. Pan, Z.L. Wang, Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13(5), 2282–2289 (2013). https://doi.org/10.1021/nl4008985

    Article  CAS  Google Scholar 

  3. F. Mugele, Baret electrowetting: from basics to applications. J. Phys. 17(28), R705–R774 (2005). https://doi.org/10.1088/0953-8984/17/28/r01

    Article  CAS  Google Scholar 

  4. Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, M. McCreary, Flexible active-matrix electronic ink display. Nature. 423(6936), 136–136 (2003). https://doi.org/10.1038/423136a

    Article  CAS  Google Scholar 

  5. S. Kim, H.J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, Low-power flexible organic light-emitting diode display device. Adv. Mater. 23(11), 3511–3516 (2011). https://doi.org/10.1002/adma.201101066

    Article  CAS  Google Scholar 

  6. B. Yoon, D.Y. Ham, O. Yarimaga, H. An, C.W. Lee, J.M. Kim, Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv. Mater. 23(46), 5492–5497 (2011). https://doi.org/10.1002/adma.201103471

    Article  CAS  Google Scholar 

  7. H.H. Chou, A. Nguyen, A. Chortos, J.W.F. To, C. Lu, J. Mei, T. Kurosawa, W.G. Bae, J.B.H. Tok, Z. Bao, A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6(1), 8011 (2015). https://doi.org/10.1038/ncomms9011

    Article  CAS  Google Scholar 

  8. T. Zhou, C. Zhang, C.B. Han, F.R. Fan, W. Tang, Z.L. Wang, Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interface. 6(16), 14695–14701 (2014). https://doi.org/10.1021/am504110u

    Article  CAS  Google Scholar 

  9. Y. Yang, H. Zhang, Z.H. Lin, Y.S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C.C. Hu, Z.L. Wang, Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7(10), 9213–9222 (2013). https://doi.org/10.1021/nn403838y

    Article  CAS  Google Scholar 

  10. Z.L. Wang, Springer International Publishing: Cham, Switzerland, 2016, pp.1–99

  11. S. Pan, Z. Zang, Fundamental theories and basic principles of triboelectric effect. Rev. Frict. 7, 2–17 (2018). https://doi.org/10.1007/s40544-018-0217-7

    Article  Google Scholar 

  12. L.S. McCarty, G.M. Whitesides, Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets  Angew. Chem. Int. Ed. 47(12), 2188–2207 (2008). https://doi.org/10.1002/anie.200701812

    Article  CAS  Google Scholar 

  13. K. Friedrich, Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 1, 3–39 (2018). https://doi.org/10.1016/j.aiepr.2018.05.001

    Article  Google Scholar 

  14. S.J. Peng, F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Facile solution-controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application. J. Alloys Compd. Alloys Comp. 481(1–2), 786–791 (2009). https://doi.org/10.1016/j.jallcom.2009.03.084

    Article  CAS  Google Scholar 

  15. B.G. Lewis, D.C. Paine, M.R.S. Bull, Applications and processing of transparent conducting oxides. MRS Bull. 25(08), 22–27 (2000). https://doi.org/10.1557/mrs2000.147

    Article  CAS  Google Scholar 

  16. N.F. Ren, L.J. Huang, M. Zhou, B.J. Li, Introduction of Ag nanoparticles and AZO layer to prepare AZO/Ag/FTO trilayer films with high overall photoelectric properties. Ceram. Int. 40(6), 8693–8699 (2014). https://doi.org/10.1016/j.ceramint.2014.01.087

    Article  CAS  Google Scholar 

  17. F.R. Fan, J.J. Luo, W. Tang, C.Y. Li, C.P. Zhang, Z.Q. Tian, Z.L. Wang, Highly transparent and flexible triboelectricnanogenerator: performance improvements and fundamental mechanisms. J. Mater. Chem. A 2, 13219–13225 (2014). https://doi.org/10.1021/nn507221f

    Article  CAS  Google Scholar 

  18. W. Seung, M.K. Gupta, K.Y. Lee, K.S. Shin, J.H. Lee, T.Y. Kim, S. Kim, J.J. Lin, J.H. Kim, S.W. Kim, Nano patterned textile-based wearable triboelectric nanogenerator. ACS Nano. 9, 3501–3509 (2015). https://doi.org/10.1021/nn507221f

    Article  CAS  Google Scholar 

  19. S.H. Lee, Y.H. Ko, J.S. Yu, Facile fabrication and characterization of arch-shaped triboelectric nanogenerator with a graphite top electrode. Phys. Status Solidi. A 212, 401–405 (2014). https://doi.org/10.1002/pssa.201431480

    Article  CAS  Google Scholar 

  20. L. Zhao, J. Duan, L. Liu, J. Wang, Y. Duan, L. Vaillant-Roca, X. Yang, Q. Tang, Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting. Nano Energy. 82, 105773 (2021). https://doi.org/10.1016/j.nanoen.2021.105773

    Article  CAS  Google Scholar 

  21. Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun, S.-T. Lee, B. Sun, Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12(3), 2893–2899 (2018). https://doi.org/10.1021/acsnano.8b00416

    Article  CAS  Google Scholar 

  22. G. Presnova, D. Presnov, V. Krupenin, Biosensors based on a silicon nanowire field–effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specified antigen. Biosens. Bioelectron. 88, 283–289 (2017). https://doi.org/10.1016/j.bios.2016.08.054

    Article  CAS  Google Scholar 

  23. H. Xiaopei, Y. Zhang, T. Ding, J. Liu, H. Zhao, Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities  Front. Bioeng. Biotechnol. (2020). https://doi.org/10.3389/fbioe.2020.00990

    Article  Google Scholar 

  24. G. Alberti, C. Zanoni, L.R. Magnaghi, R. Biesuz, Gold and silver nanoparticles-based calorimetric sensors new trends and applications. Chemosensors. 9(11), 305 (2021). https://doi.org/10.3390/chemosensors9110305

    Article  CAS  Google Scholar 

  25. A. Sahai, N. Goswami, S.D. Kaushik, S. Tripathi, Cu2O/CuO nanoparticles: novel synthesis by exploding wire technique and extensive characterization. Appl. Surf. Sci. 390, 974–983 (2016). https://doi.org/10.1016/j.apsusc.2016.09.005

    Article  CAS  Google Scholar 

  26. A. Aravinthan, S.K. Kannan, M. Govarthanan, J.H. Kim, Accumulation of biosynthesized gold nanoparticles and its impact on various organs of sprague dawley rats: a systematic study. Toxicol. Res. 5(6), 1530–1538 (2016). https://doi.org/10.1039/c6tx00202a

    Article  CAS  Google Scholar 

  27. J. Zhu, P. Zhu, Q. Yang, T. Chen, J. Wang, J. Li, A fully stretchable textile-based triboelectric nanogenerator for human motion monitoring. Mater. Lett. 280, 128568 (2020). https://doi.org/10.1016/j.matlet.2020.128568

    Article  CAS  Google Scholar 

Download references

Funding

The financial assistance received under RUSA 2.0 grant by the University of Jammu is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

ASS—Material preparation, data collection, formal analysis, and the writing of the first draft of the manuscript. DA—contributed to the experimentation, data collection, and formal analysis. RV—Conceptualization, Writing—Review and Editing, Project administration, Funding acquisition, Supervision. NBC—Conceptualization, Writing—Review and Editing.

Corresponding authors

Correspondence to Rakesh Vaid or Nandu B Chaure.

Ethics declarations

Competing interests

The authors declare that there exists no conflict of financial or non-financial interests related to the work submitted for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambyal, A.S., Anand, D., Vaid, R. et al. Synthesis and characterization of power efficient triboelectric nanogenerator based on contact-separation mode using spray pyrolysis. J Mater Sci: Mater Electron 34, 1458 (2023). https://doi.org/10.1007/s10854-023-10891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10891-z

Navigation