Skip to main content
Log in

Structure and optical properties of Sb-doped CH3NH3PbI3: effect on perovskite solar cell performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have shown that Sb has been doped into the light-absorbing methylammonium lead iodide (CH3NH3PbI3) perovskite. We had anticipated that the introduction of antimony (Sb3+) as a dopant in perovskite would result in improved light-absorbing properties for use in photovoltaic cells, including longer carrier lifetimes and an ideal band gap. We used a simplified and cost-effective method to fabricate thin films of CH3NH3PbI3 perovskite doped with antimony, which were deposited onto cleaned FTO substrates using a modified two-step spin-coating process. To evaluate the characteristics of these films, we utilized three different techniques: XRD, SEM, and UV-Vis spectroscopy to analyze their structural, optical, and dielectric properties. It was discovered that the optical band gap varied with Sb-doping concentration. The XRD data showed that there were no additional peaks, suggesting that Sb was able to partially replace Pb2+ successfully. However, the crystallinity increased with doping up to 1.0%, but decreased at higher concentrations. This finding aligns with the SEM morphology of the resulting films, which exhibited regular crystallites on a more even, compact, and complete surface. Finally, the IV curve showed improvement in the performance of the fabricated PSCs by increasing the Sb-doping ratio until 2.0% but decreased at the high concentration of 3.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request. All authors are declared that all data and materials as well as software application or custom code support their published claims and comply with field standards.

References

  1. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, R. Mosca, MAPbI3xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25(22), 4613–4618 (2013). https://doi.org/10.1021/cm402919x

    Article  CAS  Google Scholar 

  2. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  3. Y. Jiang, M.A. Green, R. Sheng, A. Ho-Baillie, Room temperature optical properties of organic–inorganic lead halide perovskites. Sol. Energy Mater. Sol. Cells 137, 253–257 (2015). https://doi.org/10.1016/j.solmat.2015.02.017

    Article  CAS  Google Scholar 

  4. J.S. Yeo, R. Kang, S. Lee, Y.J. Jeon, N. Myoung, C.L. Lee, D.Y. Kim, J.M. Yun, Y.H. Seo, S.S. Kim, S.I. Na, Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96–104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.022

    Article  CAS  Google Scholar 

  5. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5(1), 3834 (2014). https://doi.org/10.1038/ncomms4834

    Article  CAS  Google Scholar 

  6. X. Fan, X. Peng, S. Zhang, Y. Xiang, Fabrication of planar heterojunction perovskite solar cells, in 2014 International Symposium on Next-Generation Electronics (ISNE). (IEEE, New York, 2014), pp.1–2

    Google Scholar 

  7. N.G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18(2), 65–72 (2015). https://doi.org/10.1016/j.mattod.2014.07.007

    Article  CAS  Google Scholar 

  8. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  9. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2014). https://doi.org/10.1021/ja411509g

    Article  CAS  Google Scholar 

  10. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  11. T.B. Song, Q. Chen, H. Zhou, C. Jiang, H.H. Wang, Y. Yang, Y. Liu, J. You, Y. Yang, Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3(17), 9032–9050 (2015). https://doi.org/10.1039/C4TA05246C

    Article  CAS  Google Scholar 

  12. H. Chen, Y. Zhan, G. Xu, W. Chen, S. Wang, M. Zhang, Y. Li, Y. Li, Organic N-type molecule: managing the electronic states of bulk perovskite for high-performance photovoltaics. Adv. Funct. Mater. 30(36), 2001788 (2020). https://doi.org/10.1002/adfm.202001788

    Article  CAS  Google Scholar 

  13. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(1), 591 (2012). https://doi.org/10.1038/srep00591

    Article  CAS  Google Scholar 

  14. J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014). https://doi.org/10.1021/ja411014k

    Article  CAS  Google Scholar 

  15. G. Xu, R. Xue, S.J. Stuard, H. Ade, C. Zhang, J. Yao, Y. Li, Y. Li, Reducing energy disorder of hole transport layer by charge transfer complex for high performance p–i–n perovskite solar cells. Adv. Mater. 33(13), 2006753 (2021). https://doi.org/10.1002/adma.202006753

    Article  CAS  Google Scholar 

  16. S.Y. Liu, J.W. Jung, C.Z. Li, J. Huang, J. Zhang, H. Chen, A.K.Y. Jen, Three-dimensional molecular donors combined with polymeric acceptors for high performance fullerene-free organic photovoltaic devices. J. Mater. Chem. A 3(44), 22162–22169 (2015). https://doi.org/10.1039/C5TA06639E

    Article  CAS  Google Scholar 

  17. W. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li, Y. Li, Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule 3(1), 191–204 (2019). https://doi.org/10.1016/j.joule.2018.10.011

    Article  CAS  Google Scholar 

  18. P.P. Boix, S. Agarwala, T.M. Koh, N. Mathews, S.G. Mhaisalkar, Perovskite solar cells: beyond methylammonium lead iodide. J. Phys. Chem. Lett. 6(5), 898–907 (2015). https://doi.org/10.1021/jz502547f

    Article  CAS  Google Scholar 

  19. J.W. Lee, D.J. Seol, A.N. Cho, N.G. Park, High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26(29), 4991–4998 (2014). https://doi.org/10.1002/adma.201401137

    Article  CAS  Google Scholar 

  20. J.W. Lee, D.H. Kim, H.S. Kim, S.W. Seo, S.M. Cho, N.G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015). https://doi.org/10.1002/aenm.201501310

    Article  CAS  Google Scholar 

  21. F.M. Tezel, İA. Kariper, A new approach to prepare polycrystalline PbTe–TeO thin film, and its optical, structural, surface and electrical characterization. Surf. Rev. Lett. 28(04), 2150019 (2020). https://doi.org/10.1142/S0218625X21500190

    Article  Google Scholar 

  22. B.E. Cohen, S. Gamliel, L. Etgar, Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. APL Mater. (2014). https://doi.org/10.1063/1.4885548

    Article  Google Scholar 

  23. J. Padchasri, R. Yimnirun, Effects of annealing temperature on stability of methylammonium lead iodide perovskite powders. J. Alloys Compd. 720, 63–69 (2017). https://doi.org/10.1016/j.jallcom.2017.05.170

    Article  CAS  Google Scholar 

  24. D. Thakur, J.R. Wu, A. Chandel, K.J. Cheng, S.E. Chiang, K.B. Cai, S.H. Chen, C.C. Yang, Y.L. Zhong, C.T. Yuan, J.L. Shen, S.H. Chang, Structural, optical and excitonic properties of urea grading doped CH3NH3PbI3 thin films and their application in inverted-type perovskite solar cells. J. Alloys Compd. 858, 157660 (2021). https://doi.org/10.1016/j.jallcom.2020.157660

    Article  CAS  Google Scholar 

  25. S. Chatterjee, A.J. Pal, Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J. Phys. Chem. C 120(3), 1428–1437 (2016). https://doi.org/10.1021/acs.jpcc.5b11540

    Article  CAS  Google Scholar 

  26. F. Meydaneri Tezel, F.N. Güven, İA. Kariper, Production and characterization of Cu-doped perovskite thin film electrodes for supercapacitors. Inorg. Chem. Commun. 143, 109766 (2022). https://doi.org/10.1016/j.inoche.2022.109766

    Article  CAS  Google Scholar 

  27. F. Meydaneri Tezel, İA. Kariper, A new process to synthesize CrSe thin films with nanosize by CBD method. Mater. Res. Express 6(3), 036412 (2019). https://doi.org/10.1088/2053-1591/aaf593

    Article  CAS  Google Scholar 

  28. Q. Mohsen, O.H. Abd-Elkader, A.E.A. Farouk, H.M.A. Hassan, N.Y. Mostafa, Influence of tungsten substitution on structure, optical, vibrational and magnetic properties of hydrothermally prepared NiFe2O4. Appl. Phys. A: Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-021-04452-6

    Article  Google Scholar 

  29. N.Y. Mostafa, A. Badawi, S.I. Ahmed, Influence of Cu and Ag doping on structure and optical properties of In2O3 thin film prepared by spray pyrolysis. Results Phys. 10, 126–131 (2018). https://doi.org/10.1016/j.rinp.2018.05.030

    Article  Google Scholar 

  30. İA. Kariper, T. Özpozan, Optical and electrical properties of nickel xanthate thin films. Bull. Mater. Sci. 37(3), 553–561 (2014). https://doi.org/10.1007/s12034-014-0697-7

    Article  CAS  Google Scholar 

  31. A.M. Bolbol, O.H. Abd-Elkader, H. Elshimy, Z.I. Zaki, S.A. Shata, M. Kamel, A.S. Radwan, N.Y. Mostafa, The effect of Zr (IV) doping on TiO2 thin film structure and optical characteristics. Results Phys. 42, 105955 (2022). https://doi.org/10.1016/j.rinp.2022.105955

    Article  Google Scholar 

  32. A. Fakharuddin, F. De Rossi, T.M. Watson, L. Schmidt-Mende, R. Jose, Research update: behind the high efficiency of hybrid perovskite solar cells. APL Mater. 4(9), 091505 (2016). https://doi.org/10.1063/1.4962143

    Article  CAS  Google Scholar 

  33. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011). https://doi.org/10.1039/C1NR10867K

    Article  CAS  Google Scholar 

  34. İA. Kariper, Optical and structural properties of PbI2 thin film produced via chemical dipping method. Opt. Rev. 23(3), 401–408 (2016). https://doi.org/10.1007/s10043-016-0218-6

    Article  CAS  Google Scholar 

  35. I.A. Kariper, Pb-Ag/I thin film by co-precipitation method. Iran. J. Sci. Technol. Trans. A: Sci. 40(2), 137–143 (2016). https://doi.org/10.1007/s40995-016-0017-8

    Article  Google Scholar 

  36. A. Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab, S.E. Alomairy, Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J. Mater. Sci. Mater. Electron. 28(15), 10877–10884 (2017). https://doi.org/10.1007/s10854-017-6866-x

    Article  CAS  Google Scholar 

  37. A. Badawi, S.S. Alharthi, N.Y. Mostafa, M.G. Althobaiti, T. Altalhi, Effect of carbon quantum dots on the optical and electrical properties of polyvinylidene fluoride polymer for optoelectronic applications. Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-019-3160-1

    Article  Google Scholar 

  38. S. Tolansky, Multiple-Beam Interferometry Surface and Films, vol. 76 (Oxford Univesity Press, London, 1978)

    Google Scholar 

  39. A. Badawi, S.S. Alharthi, N.Y. Mostafa, M.G. Althobaiti, T. Altalhi, Effect of carbon quantum dots on the optical and electrical properties of polyvinylidene fluoride polymer for optoelectronic applications. Appl. Phys. A 125(12), 858 (2019). https://doi.org/10.1007/s00339-019-3160-1

    Article  CAS  Google Scholar 

  40. S.M.H. Qaid, M.S. Al Sobaie, M.A. Majeed Khan, I.M. Bedja, F.H. Alharbi, M.K. Nazeeruddin, A.S. Aldwayyan, Band-gap tuning of lead halide perovskite using a single step spin-coating deposition process. Mater. Lett. 164, 498–501 (2016). https://doi.org/10.1016/j.matlet.2015.10.135

    Article  CAS  Google Scholar 

  41. H. Tian, L. Hu, C. Zhang, S. Chen, J. Sheng, L. Mo, W. Liu, S. Dai, Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO2 electrode modified by boron doping. J. Mater. Chem. 21(3), 863–868 (2011). https://doi.org/10.1039/C0JM02941F

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Researchers Supporting Project number (RSP2023R468), King Saud University, Riyadh, Saudi Arabia for supporting this work.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AMB, OHA, HE and SAS. All authors reviewed the data and provided suggestions. The first draft of the manuscript was written by AB and critically reviewed and commented on previous versions of the manuscript by [NYM] and [MK]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmed M. Bolbol.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that they guarantee the compliance with ethical standards.

Informed consent

We confirm that all authors mentioned in the manuscript have participated in, read, and approved the manuscript, and have given their consent for the submission and subsequent publication of the manuscript.

Consent for publication

We confirm that all the authors mentioned in the manuscript have agreed to publish this paper.

Research involving human participants or animals

This paper contains no research involving human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolbol, A.M., Elshimy, H., Abd-Elkader, O.H. et al. Structure and optical properties of Sb-doped CH3NH3PbI3: effect on perovskite solar cell performance. J Mater Sci: Mater Electron 34, 1489 (2023). https://doi.org/10.1007/s10854-023-10885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10885-x

Navigation