Skip to main content
Log in

In situ study of electrochemical migration of Sn3Ag0.5Cu solder reinforced by Cu6Sn5 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The increasing packaging density and power density have led to a drastic increase in the electric field strength between solder joints, and the accelerated movement of ions significantly rises the potential for failure of solder joints caused by electrochemical migration (ECM). To improve the anti-electrochemical migration ability of Sn3Ag0.5Cu solder (SAC305), we doped Cu6Sn5 nanoparticles (NPs) into SAC305 solder paste and studied its mechanism for inhibiting ECM. In this experiment, Cu6Sn5 NPs were prepared by ultrasound-assisted chemical reduction, and composite solder pastes were prepared by mechanically mixing Cu6Sn5 NPs with SAC305. In situ observation of the ECM between electrodes was carried out under different operating conditions. The addition of Cu6Sn5 NPs within 0.6 wt% could effectively inhibit the ECM by prolonging the incubation period. However, when the amount of Cu6Sn5 NPs exceeded 0.6 wt%, the catalytic effect of Cu6Sn5 NPs on the hydrogen evolution reaction would create vigorous convection within the droplet, which accelerated the failure by ECM. Apart from that, it was found that the addition of Cu6Sn5 NPs could increase the threshold for instantaneous failure of solder joints under high voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. P. Zhang, S. Xue, J. Wang, New challenges of miniaturization of electronic devices: electromigration and thermomigration in lead-free solder joints. Mater. Des. 192, 108726 (2020). https://doi.org/10.1016/j.matdes.2020.108726

    Article  CAS  Google Scholar 

  2. X. Wu, H. Ma, H. Yin, D. Pan, J. Wang, L. Yu et al., 3D sidewall integration of ultrahigh-density silicon nanowires for stacked channel electronics. Adv. Electron. Mater. 5, 1800627 (2019). https://doi.org/10.1002/aelm.201800627

    Article  CAS  Google Scholar 

  3. M.B. Kelly, S. Niverty, N. Chawla, Electromigration in Bi-crystal pure Sn solder joints: elucidating the role of grain orientation. J. Alloys Compd. 818, 152918 (2020). https://doi.org/10.1016/j.jallcom.2019.152918

    Article  CAS  Google Scholar 

  4. L. Gong, Y.-P. Xu, B. Ding, Z.-H. Zhang, Z.-Q. Huang, Thermal management and structural parameters optimization of MCM-BGA 3D package model. Int. J. Therm. Sci. 147, 106120 (2020). https://doi.org/10.1016/j.ijthermalsci.2019.106120

    Article  Google Scholar 

  5. H. Ye, C. Basaran, D.C. Hopkins, Deformation of solder joint under current stressing and numerical simulation––I. Int. J. Solids Struct. 41, 4939–4958 (2004). https://doi.org/10.1016/j.ijsolstr.2004.04.002

    Article  Google Scholar 

  6. H. Ye, C. Basaran, D.C. Hopkins, Deformation of solder joint under current stressing and numerical simulation––II. Int. J. Solids Struct. 41, 4959–4973 (2004). https://doi.org/10.1016/j.ijsolstr.2004.04.003

    Article  Google Scholar 

  7. X. Zhong, W. Lu, B. Liao, B. Medgyes, J. Hu, Y. Zheng et al., Evidence for Ag participating the electrochemical migration of 96.5Sn–3Ag–0.5Cu alloy. Corros. Sci. 156, 10–5 (2019). https://doi.org/10.1016/j.corsci.2019.05.004

    Article  CAS  Google Scholar 

  8. B. Liao, L. Wei, Z. Chen, X. Guo, Na2S-influenced electrochemical migration of tin in a thin electrolyte layer containing chloride ions. RSC Adv. 7, 15060–15070 (2017). https://doi.org/10.1039/C6RA27823J

    Article  CAS  Google Scholar 

  9. B. Medgyes, A. Gharaibeh, G. Harsányi, B. Pécz, I. Felhősi, Electrochemical corrosion and electrochemical migration characteristics of SAC-1Bi-xMn solder alloys in NaCl solution. Corros. Sci. 213, 110965 (2023). https://doi.org/10.1016/j.corsci.2023.110965

    Article  CAS  Google Scholar 

  10. S. Li, X. Wang, Z. Liu, F. Mao, Y. Jiu, J. Luo et al., Research status of evolution of microstructure and properties of Sn-based lead-free composite solder alloys. J. Nanomater. 2020, 1–25 (2020). https://doi.org/10.1155/2020/8843166

    Article  CAS  Google Scholar 

  11. F. Yang, L. Zhang, Z. Liu, S. Zhong, J. Ma, L. Bao, Effects of CuZnAl particles on properties and microstructure of Sn-58Bi solder. Materials 10, 558 (2017). https://doi.org/10.3390/ma10050558

    Article  CAS  Google Scholar 

  12. V. Verdingovas, M.S. Jellesen, R. Ambat, Impact of NaCl contamination and climatic conditions on the reliability of printed circuit board assemblies. IEEE Trans. Device Mater. Reliab. 14, 42–51 (2014). https://doi.org/10.1109/TDMR.2013.2293792

    Article  CAS  Google Scholar 

  13. L. Hua, H.N. Hou, Electrochemical corrosion and electrochemical migration of 64Sn-35Bi-1Ag solder doping with xGe on printed circuit boards. Microelectron. Reliab. 75, 27–36 (2017). https://doi.org/10.1016/j.microrel.2017.06.005

    Article  CAS  Google Scholar 

  14. C.A. Yang, J. Wu, C.C. Lee, C.R. Kao, Analyses and design for electrochemical migration suppression by alloying indium into silver. J. Mater. Sci.: Mater. Electron. 29, 13878–13888 (2018). https://doi.org/10.1007/s10854-018-9520-3

    Article  CAS  Google Scholar 

  15. S.-J. Song, S.-R. Choi, J.-G. Kim, The effect of organic additives for the prevention of copper electrochemical migration. J. Electroanal. Chem. 832, 75–86 (2019). https://doi.org/10.1016/j.jelechem.2018.10.031

    Article  CAS  Google Scholar 

  16. B. Liao, Z. Chen, Q. Qiu, X. Guo, Inhibitory effect of cetyltrimethylammonium bromide on the electrochemical migration of tin in thin electrolyte layers containing chloride ions. Corros. Sci. 118, 190–201 (2017). https://doi.org/10.1016/j.corsci.2017.02.013

    Article  CAS  Google Scholar 

  17. N.K. Othman, F.R. Omar, F.C. Ani, Electrochemical migration and corrosion behaviours of SAC305 reinforced by NiO, Fe2O3, TiO2 nanoparticles in NaCl solution. IOP Conf. Ser.: Mater. Sci. Eng. 701, 012044 (2019). https://doi.org/10.1088/1757-899X/701/1/012044

    Article  Google Scholar 

  18. F. Rosalbino, E. Angelini, G. Zanicchi, R. Carlini, R. Marazza, Electrochemical corrosion study of Sn–3Ag–3Cu solder alloy in NaCl solution. Electrochim. Acta 54, 7231–7235 (2009). https://doi.org/10.1016/j.electacta.2009.07.030

    Article  CAS  Google Scholar 

  19. B. Liao, Z. Chen, Y. Qiu, G. Zhang, X. Guo, Effect of citrate ions on the electrochemical migration of tin in thin electrolyte layer containing chloride ions. Corros. Sci. 112, 393–401 (2016). https://doi.org/10.1016/j.corsci.2016.08.003

    Article  CAS  Google Scholar 

  20. M. Li, L. Zhang, N. Jiang, L. Zhang, S. Zhong, Materials modification of the lead-free solders incorporated with micro/nano-sized particles: a review. Mater. Des. 197, 109224 (2021). https://doi.org/10.1016/j.matdes.2020.109224

    Article  CAS  Google Scholar 

  21. X. Zhao, Y. Wen, Y. Li, Y. Liu, Y. Wang, Effect of γ-Fe2O3 nanoparticles size on the properties of Sn-1.0Ag–0.5Cu nano-composite solders and joints. J. Alloys Compd. 662, 272–82 (2016). https://doi.org/10.1016/j.jallcom.2015.11.213

    Article  CAS  Google Scholar 

  22. L. Yang, L. Zhu, Y. Zhang, P. Liu, N. Zhang, S. Zhou et al., Microstructure and reliability of Mo nanoparticle reinforced Sn–58Bi-based lead-free solder joints. Mater. Sci. Technol. 34, 992–1002 (2018). https://doi.org/10.1080/02670836.2017.1415791

    Article  CAS  Google Scholar 

  23. F.R. Omar, E.M. Salleh, N.K. Othman, F.C. Ani, Z. Samsudin, The morphology of Pb-free Sn–3.0Ag–0.5Cu solder reinforced by NiO nanoparticles. AIP Conf. Proc. 2111, 030005 (2019). https://doi.org/10.1063/1.5111235

    Article  CAS  Google Scholar 

  24. A. Gharaibeh, B. Medgyes, Electrochemical migration investigation on SAC alloys incorporated by TiO2 nanoparticles in NaCl solution, in 2022 IEEE 9th Electronics System-Integration Technology Conference (ESTC). (2022), pp. 484–487. https://doi.org/10.1109/ESTC55720.2022.9939484

  25. Z. Lv, J. Wang, F. Wang, W. Zhang, J. Wang, C. Hang et al., Effect of Cu6Sn5 nanoparticles addition on properties of Sn3.0Ag0.5Cu solder joints. J. Mater. Sci.: Mater. Electron. 34, 732 (2023). https://doi.org/10.1007/s10854-023-10075-9

    Article  CAS  Google Scholar 

  26. S. Li, C. Jiang, J. Hao, J. Zhou, F. Xue, Effect of thixotropic agents on the rheology of SnAgCu lead-free solder pastes used for jet printing. Mater. Res. Express 6, 056303 (2019). https://doi.org/10.1088/2053-1591/ab039c

    Article  CAS  Google Scholar 

  27. R. Durairaj, S. Ramesh, S. Mallik, A. Seman, N. Ekere, Rheological characterisation and printing performance of Sn/Ag/Cu solder pastes. Mater. Des. 30, 3812–3818 (2009). https://doi.org/10.1016/j.matdes.2009.01.028

    Article  CAS  Google Scholar 

  28. E.H. Amalu, N.N. Ekere, S. Mallik, Evaluation of rheological properties of lead-free solder pastes and their relationship with transfer efficiency during stencil printing process. Mater. Des. 32, 3189–3197 (2011). https://doi.org/10.1016/j.matdes.2011.02.045

    Article  CAS  Google Scholar 

  29. Q. Xu, S. Li, J. Hao, J. Zhou, F. Xue, Effect of solvent on rheological properties of Sn–0.3Ag–0.7Cu solder paste for jet printing. Mater. Res. Express 6, 086323 (2019). https://doi.org/10.1088/2053-1591/ab23ae

    Article  CAS  Google Scholar 

  30. S.S. Zhang, Y.J. Zhang, H.W. Wang, Effect of particle size distributions on the rheology of Sn/Ag/Cu lead-free solder pastes. Mater. Des. 31, 594–598 (2010). https://doi.org/10.1016/j.matdes.2009.07.001

    Article  CAS  Google Scholar 

  31. M. Kaneda, T. Tagawa, H. Ozoe, Natural convection of liquid metal under a uniform magnetic field with an electric current supplied from outside. Exp. Therm. Fluid Sci. 30, 243–252 (2006). https://doi.org/10.1016/j.expthermflusci.2005.07.001

    Article  CAS  Google Scholar 

  32. S. Jungblut, J.-O. Joswig, A. Eychmüller, Diffusion-limited cluster aggregation: impact of rotational diffusion. J. Phys. Chem. C 123, 950–954 (2019). https://doi.org/10.1021/acs.jpcc.8b10805

    Article  CAS  Google Scholar 

  33. N. Ivanova, The electrochemistry of intermetallic compounds: a mini-review. Electrochem. Commun. 80, 48–54 (2017). https://doi.org/10.1016/j.elecom.2017.05.008

    Article  CAS  Google Scholar 

  34. Z. Li, Z. Qi, S. Wang, T. Ma, L. Zhou, Z. Wu et al., In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions. Nano Lett. 19, 5102–5108 (2019). https://doi.org/10.1021/acs.nanolett.9b01381

    Article  CAS  Google Scholar 

  35. X. Wang, M. Luo, J. Lan, M. Peng, Y. Tan, Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction. Adv. Mater. 33, 2007733 (2021). https://doi.org/10.1002/adma.202007733

    Article  CAS  Google Scholar 

  36. D. Raj, F. Scaglione, G. Fiore, F. Celegato, P. Rizzi, Nanostructured molybdenum oxides from aluminium-based intermetallic compound: synthesis and application in hydrogen evolution reaction. Nanomaterials 11, 1313 (2021). https://doi.org/10.3390/nano11051313

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Stable Support Program for Higher Education Institutions of Shenzhen (NO. GXWD20220818163456002), Key-Area Research and Development Program of Guangdong Province under Grant (2022B0701180002), CEPREI Innovation and Development Fund (No22Z04), Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory (ZHD202210-016, ZHD202209-018).

Author information

Authors and Affiliations

Authors

Contributions

ZL: Writing—original draft, Visualization. JW: Writing—review, Writing—original draft. FW: Formal analysis, Data curation. WZ: Formal analysis. JW: Methodology. FL: Supervision. HC: Funding acquisition.

Corresponding author

Correspondence to Hongtao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We declare that the study follows accepted principles of ethical and professional conduct.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Wang, J., Wang, F. et al. In situ study of electrochemical migration of Sn3Ag0.5Cu solder reinforced by Cu6Sn5 nanoparticles. J Mater Sci: Mater Electron 34, 1469 (2023). https://doi.org/10.1007/s10854-023-10881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10881-1

Navigation