Skip to main content
Log in

Crystal growth, optical, luminescence, SHG and THG exploration of an inorganic noncentrosymmetric alkaline borate crystal: K2B4O5(OH)4·3·6H2O(KBOH) for photonic and optical limiting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A potential, nonlinear optical alkaline borate crystal K2B4O5(OH)4·3·6H2O(KBOH) was crystallized from aqueous solution by slow evaporation method. In this asymmetric unit cell, BO4 the tetrahedral coordination geometries and the BO3 triangular planar coordination geometries are linked by common O atoms to form the isolated B4O7 group. Single crystal XRD was taken to know the structural parameters and revealed orthorhombic crystal system comprising a 3D network. UV–Vis absorption spectrum shows that crystal has wide optical transparency in 200–1100 nm range. The functional groups of the K2B4O5·(OH)4·3·6H2O crystal were analyzed by FT–IR spectrum. The mechanical strength and the luminescence response of the crystal have been tested by Vicker’s microhardness and photoluminescence study. The chemical stability was presented by HOMO–LUMO energy values. The intermolecular interaction is evident from the 3d-Hirshfeld surface and 2d-fingerprint plot. The dielectric property of the grown crystal was established by dielectric measurements. Thermal analyses reveal that the material has good thermal stability. The second harmonic generation of the borate hydrated structure material KBOH has been accomplished by Kurtz–Perry technique, and third-order nonlinear optical parameters Nonlinear Refractive Index NLR, Nonlinear Absorption Coefficient and third order susceptibility (χ(3)) were found by Z-scan closed and open aperture approach to explore its suitability in the field of NLO applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Sambasivam, L. Liu, Y. Yang, G. Han, B. Bashir, Z.Y. Shilie Pan, Synthesis crystal structures and characterization of three alkaline metal borates. Crys. Engg. Comm. 19, 256 (2017)

    Google Scholar 

  2. W. BoydRobert, Nonlinear optics (Academic Press, Cambridge, 2008)

    Google Scholar 

  3. Z. Sun, Application of third-order nonlinear optical materials in complex crystalline chemical reactions of borates. Nonlinear Eng. 11, 609–614 (2022)

    Google Scholar 

  4. R. Arun Kumar, Borate crystals for nonlinear optical and laser applications: a review. J. Chem. (2013). https://doi.org/10.1155/2013/154862

    Article  Google Scholar 

  5. R. Cieslak, W.A. Clarkson, Opt. Lett. 36, 1896 (2011)

    CAS  Google Scholar 

  6. C.F. Dewey, W.R. Cook, R.T. Hodgson, J.J. Wynne, Frequency doubling in KB5O8-4H2O and NH4B5O8-4H2O to 217.3 nm. Appl. Phys. Lett. 26, 714–717 (1975)

    CAS  Google Scholar 

  7. V.T. Adamiv, Y.V. Burak, I.V. Kityk, J. Kasperczyk, R. Smok, M. Czerwiński, Nonlinear optical properties of Li2B4O7 single crystals doped with potassium and silver. Opt. Mater. 8(3), 207–213 (1997)

    CAS  Google Scholar 

  8. A. Majchrowski, I.V. Kityk, J. Ebothé, Influence of YAB: Cr3+ nanocrystallite sizes on two-photon absorption of YAB:Cr3+. Phys. Status Solidi B 241(13), 3047–3055 (2004)

    CAS  Google Scholar 

  9. M. Ghotbi, M. Ebrahim-Zadeh, A. Majchrowski, E. Michalski, I.V. Kityk, High-average-power femtosecond pulse generation in the blue using BiB3O6. Opt. Lett. 29(21), 2530–2532 (2004)

    CAS  Google Scholar 

  10. M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I.V. Kityk, Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6. Appl. Phys. Lett. 89, 17 (2006)

    Google Scholar 

  11. V. Petrov, M. Ghotbi, O. Kokabee et al., Femtosecond nonlinear frequency conversion based on BiB3O6. Laser Photon. Rev. 4(1), 53–98 (2010)

    CAS  Google Scholar 

  12. I.V. Kityk, A. Majchrowski, Second-order non-linear optical effects in BiB3O6 glass fibers. Opt. Mater. 26, 33–37 (2004)

    Google Scholar 

  13. S. Kar, R.K. Choubey, P. Sen, G. Bhagavannarayana, K.S. Bartwal, Studies on codoping behavior of Nd:Mg:LiNbO3 crystals. Physica B 393, 37–42 (2007)

    CAS  Google Scholar 

  14. J. Zong, X. Wu, W. Zhou, Y. Song, Ultrafast third-order nonlinear optical properties of self-assembled poly[[4,4-bis(4-sulphobutyl)-4H-cyclopenta[2,1-b:3,4-b’]dithiophene-2,6-diyl]-1,4- phenylene sodium sa multilayer films. J. Mod. Opt. 68(9), 1–6 (2021)

    Google Scholar 

  15. V. Parol, A.N. Prabhu, M.A. Taher, S.R.G. Naraharisetty, N.K. Lokanath, V. Upadhyaya, A third-order nonlinear optical single crystal of 3, 4-dimethoxy-substituted chalcone derivative with high laser damage threshold value: a potential material for optical power. J. Mater. Sci.: Mater. Electron. 31, 9133–9150 (2020)

    CAS  Google Scholar 

  16. S. Chinnasami, R. Paulraj, P. Ramasamy, Investigation on the bulk crystal growth, crystalline perfection, refractive index and piezoelectric properties of borate single crystals for piezoelectric and electro-optic applications. Chin. J. Phys. 72, 616–627 (2021)

    CAS  Google Scholar 

  17. R.K. Choubey, P. Sen, S. Kar, G. Bhagavannarayana, K.S. Bartwal, Effect of codoping on crystalline perfection of Mg:Cr:LiNbO3 crystals. Solid State Commun. 140, 120–124 (2006)

    CAS  Google Scholar 

  18. T.S. Ortner, K. Wurst, L. Perfler, M. Tribus, H. Huppertz, J. Solid State Chem. 221, 66 (2015)

    CAS  Google Scholar 

  19. M. Touboul, N. Penin, G. Nowogrocki, Solid State Sci. 5, 1327 (2003)

    CAS  Google Scholar 

  20. G.H. Yuan, D.F. Xue, A. Crystallogr, Sect. B: Struct. Sci. 63, 353 (2007)

    CAS  Google Scholar 

  21. H.-S. Ra, K. Min Ok, P. Shiv Halasyamani, J. Am. Chem. Soc. 125(26), 7764–7765 (2003)

    CAS  Google Scholar 

  22. P. Shiv Halasyamani, W. Zhang, Inorganic materials for UV and deep-UV. Nonlinear-optical applications. Inorg. Chem. 56(20), 12077–12085 (2017)

    Google Scholar 

  23. G.T. Chen, Y.C. Wu, A.D. Jiang, B.C. Wu, G.M. You, R.K. Li, S.J. Lin, Opt. Soc. Am. B 6, 616 (1989)

    CAS  Google Scholar 

  24. Y.C. Wu, T. Sasaki, S. Naai, A. Yokotani, H.G. Tang, C.T. Chen, Appl. Phys. Lett. 62, 2614 (1993)

    CAS  Google Scholar 

  25. Y.V. Seryotkin, E.A. Fomina, L.I. Isaenko, Opt. Mater. 35, 1646 (2013)

    CAS  Google Scholar 

  26. L. Li, S.J. Han, B.H. Lei, X.Y. Dong, H.P. Wu, X. Zhou, Z.H. Yangand, S.L. Pan, Inorg. Chem. 54, 7381 (2015)

    CAS  Google Scholar 

  27. C.T. Chen, G.L. Wang, X.Y. Wang, X.Y. Zu, Appl. Phys. B: Lasers Opt. 97, 9 (2009)

    CAS  Google Scholar 

  28. A.B. Ali, V. Maisonneuve, J. Alloys Compd. 322, 153 (2001)

    Google Scholar 

  29. A.B. Meshalkin, A.B. Kaplun, N.A. Pylneva, L.L. Pylneva, R.F. Klevtzova, L.A. Glinskaya, J. Cryst. Growth 310, 1971 (2008)

    CAS  Google Scholar 

  30. J.G. Zhou, F.Y. Zhao, S.P. Xia, S.Y. Gao, J. Mol. Struct. 688, 143 (2004)

    CAS  Google Scholar 

  31. A.B. Ali, L.S. Smiri, V. Maisonneuve, J. Alloys Compd. 322, 153 (2001)

    Google Scholar 

  32. H.W. Yu, H.P. Wu, S.L. Pan, Z.H. Yang, X.L. Hou, X. Su, Q. Jing, K.R. Poeppelmeier, J.M. Rondinelli, J. Am. Chem. Soc. 136, 1264 (2014)

    CAS  Google Scholar 

  33. Q. Liu, X.Y. Zhang, Z.H. Yang, F.F. Zhang, L.L. Liu, J. Han, Z. Li, S.L. Pan, Inorg. Chem. 55, 8744 (2016)

    CAS  Google Scholar 

  34. L.L. Liu, Y. Yang, L.P. Li, Z.H. Yang, S.L. Pan, J. Alloys Compd. 695, 1719 (2017)

    CAS  Google Scholar 

  35. G.S. Xiong, G.X. Lan, H.F. Wang, C.O. Huang, J. Raman Spectrosc. 24, 785 (1993)

    CAS  Google Scholar 

  36. P. Sangeetha, M. Nageshwari, C. Rathika Thaya Kumari, S. Sudha, P. Jayaprakash, G. Mathubala, M. Lydia Caroline, G. Vinitha, A. Manikandan, Linear and nonlinear optical investigation of L-arginine adipate single crystal for photonic applications. Physica B 518, 1–12 (2017)

    Google Scholar 

  37. S. Sudha, C. Rathika Thaya Kumari, M. Nageshwari, R. Ram, G. Vinitha, M. Lydia Caroline, G. Mathubala, A. Manikandan, Crystal growth, optical, spectroscopic studies, PL-behaviour and Hirshfield surface analysis of a third-order nonlinear optical cesium hydrogen oxalate dihydrate (CHOD) single crystal. J. Mater. Sci.: Mater. Electron. 31(18), 15028–15037 (2020)

    CAS  Google Scholar 

  38. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liquids 337, 116405 (2021)

    CAS  Google Scholar 

  39. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    CAS  Google Scholar 

  40. M. Nageshwari, C. Rathika Thaya Kumari, G. Vinitha, S. Muthu, M. Lydia Caroline, Growth and characterization of L-Serine: A promising acentric organic crystal. Phys. B 541, 32–42 (2018)

    CAS  Google Scholar 

  41. S. Sudha, M. Peer Mohamed, G. Vinitha, C. RathikaThayaKumari, P. Sangeetha, M. LydiaCaroline, Synthesis, growth and third order nonlinear optical studies of a rhombohedral crystal: sodium tetraborate pentahydrate. Chin. J. Phys. 57, 211–225 (2019)

    CAS  Google Scholar 

  42. A. Shanthi, C. Krishnan, P. Selvarajan, Growth and characterization of a single crystal of urea adipic acid (UAA)-A third order nonlinear optical material. Spectrochim. Acta Part A 122, 521–528 (2014)

    CAS  Google Scholar 

  43. Y. Song, J. Wang, L. Chen, P. Yang, Ammonium pentaborate crystals with adjustable and bright phosphorescence and long lifetime. J. Lumin. 225, 117325 (2020)

    CAS  Google Scholar 

  44. M. Lydia Caroline, S. Vasudevan, Growth and characterization of bis thiourea cadmium iodide: a semiorganic single crystal. Mat. Chem. Phys. 113, 670–674 (2009)

    Google Scholar 

  45. A.K. Jonscher, Nature 267, 673 (1977)

    CAS  Google Scholar 

  46. F.A. Najar, G.B. Vakil, B. Want, Structural, optical and dielectric studies of lithium sulphate monohydrate single crystals. Mater. Sci.-Poland (2017). https://doi.org/10.1515/msp-2017-0002

    Article  Google Scholar 

  47. K. Senthil, S. Kalainathan, A.R. Kumar, P.G. Aravindan, Investigation of synthesis, crystal structure and third order NLO properties of a new stilbazolium derivative crystal: a promising material for nonlinear optical devices. RSC Adv. 4, 56112–56127 (2014)

    CAS  Google Scholar 

  48. P. Ramesh, M. LydiaCaroline, S. Muthu, B. Narayana, M. Raja, S. Aayisha, Spectroscopic, hirshfeld surface, charge transfer excitation, condensed Fukui function and molecular docking investigations of 1-(3-Bromo-2-thienyl)-3-(4-butoxyphenyl)-prop-2-en-1-one. Chem. Data Collect. 24, 100309 (2019)

    CAS  Google Scholar 

  49. S. Sudha, P. Ramesh, C. RathikaThayaKumari, P. Jayaprakash, M. Kumar, G. Vinitha, M. LydiaCaroline, Growth, spectroscopic, HOMO-LUMO energies, MEP, hardness and TG/DTA studies of acid potassium hydrogen fumarate as an efficient nonlinear optical material. J. Mol. Struct. 1209, 127946 (2020)

    CAS  Google Scholar 

  50. M. Nageshwari, C. Rathika Thaya Kumari, S. Sudha, G. Vinitha, M. Lydia Caroline, G. Mathubala, A. Manikandan, Spectral, dielectric, mechanical and optical chracteristics of LPDMCL single crystal for nonlinear optical applications. Phys. B 582, 411980 (2020)

    CAS  Google Scholar 

  51. E.M. Onitsch, Uber die Mikroharte der Metalle. Mikroscopia 2, 131–151 (1947)

    Google Scholar 

  52. W.A. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16, 62–82 (1953)

    Google Scholar 

  53. P. Sangeetha, P. Jayaprakash, M. Nageshwari, C. Rathika Thaya Kumaria, S. Sudha, M. Prakash, G. Vinitha, M. Lydia Caroline, Growth and characterization of an efficient new NLO single crystal L-phenylalanine D-methionine for frequency conversion and optoelectronic applications. Physica B 525, 164–174 (2017)

    CAS  Google Scholar 

  54. S.K. Kurtz, T.T. Perry, A powder technique for the evolution of nonlinear optical materials. J. Appl. Phys. 39, 3798–3812 (1968)

    CAS  Google Scholar 

  55. R.K. Choubey, R. Trivedi, M. Das, P.K. Sen, P. Sen, S. Kar, K.S. Bartwal, R.A. Ganeev, Growth and study of nonlinear refraction and absorption in Mg doped LiNbO 3 single crystals. J. Cryst. Growth 311(8), 2597–2601 (2009). https://doi.org/10.1016/j.jcrysgro.2009.02.013

    Article  CAS  Google Scholar 

  56. S.K. Patra, B.K. Dadhich, B. Bhushan, R.K. Choubey, A. Priyam, Nonlinear absorption and refraction of highly monodisperse and luminescent ZnTe quantum dots and their self-assembled nanostructures: implications for optoelectronic devices. ACS Omega 6(46), 31375–31383 (2021)

    CAS  Google Scholar 

  57. R.K. Choubey, S. Medhekar, R. Kumar, S. Mukherjee, Sunil Kumar, Study of nonlinear optical properties of organic dye by Z-scan technique using He–Ne laser. J. Mater. Sci.: Mater. Electron. 25, 1410–1415 (2014)

    CAS  Google Scholar 

  58. T. Thilak, M. Basheer Ahamed, G. Vinitha, Third order nonlinear optical properties of potassium dichromate single crystals by Z-scan technique. Optik 124, 4716–4720 (2013)

    CAS  Google Scholar 

  59. M.G. Kuzyk, C.W. Dirk, Characterization techniques and tabulations for organic nonlinear materials (Marcel Dekkar Inc., Newyork, 1998), pp.655–692

    Google Scholar 

  60. M. Nageshwari, C. Rathika Thaya Kumari, G. Vinitha, M. Peer Mohamed, S. Sudha, M. Lydia Caroline, Crystal growth, structural, spectral, thermal, dielectric, linear and nonlinear optical characteristics of a new organic acentric material: L-Methionine-Succinic acid (2/1). J. Mol. Struct. 1155, 101–109 (2018)

    CAS  Google Scholar 

  61. G. Rajasekar, M.K. Dhatchaiyani, P. Rekha, S. Sudhahar, G. Vinitha, A. Bhaskaran, Investigation on linear and nonlinear optical properties of third-order optical semi-organic material:ammonium bis (citrate) borate dehydrate. J. Mater. Sci.: Mater. Electron. 31, 18732–18744 (2020)

    Google Scholar 

  62. V. Kannan, S. Brahadeeswaran, Synthesis, growth, thermal, optical and mechanical studies on 2-amino-6-methylpyridinium 4-hydroxybenzoate. J. Therm. Anal. Calorim. 124, 2 (2016)

    Google Scholar 

  63. Y.S. Zhou, E.B. Wang, J. Peng, J. Liu, C.W. Hu, R.D. Huang, X. You, Synthesis and the third-order optical nonlinearities of two novel charge-transfer complexes of a heteropoly blue type (C9H7NO)4 H7PMo12O40·3H2O (C9H7NO = quinolin-8-ol) and (phen)3 H7PMo12O40·CH3CN·H2O (phen = 1,10-phenanthroline). Polyhedron 18(10), 1419–1423 (1999). https://doi.org/10.1016/S0277-5387(98)00448-3

    Article  CAS  Google Scholar 

  64. M. Dhavamurthy, R. Raja, K. SyedSuresh Babu, R. Mohan, Crystal structure, growth and characterization of a novel organic third-order nonlinear optical crystal: guanidinium cinnamate. Appl. Phys. A 122, 1–9 (2016). https://doi.org/10.1007/s00339-016-0219-0

    Article  CAS  Google Scholar 

  65. D. Wang, T. Li, S. Wang, Z. Wang, X. Xu, F. Zhang, Study on nonlinear refractive properties of KDP and DKDP crystals. RSC Adv. 6(18), 14490–14495 (2016)

    CAS  Google Scholar 

  66. M.K. Kumar, S. Sudhahar, P. Pandi, G. Bhagavannaranya, R.M. Kumar, Studies of the structural and third-order nonlinear optical properties of solution grown 4-hydroxy-3-methoxy-4-N-methylstibazoliumtosylate monohydrate crystals. Opt. Mater. 36, 988 (2014)

    Google Scholar 

Download references

Acknowledgements

The scientific supports rendered by sophisticated analytical instrument facility (SAIF), IITM Chennai for support in single crystal XRD, FTIR is gratefully acknowledged. Also the authors thank for the facilities extended by Department of Physics, St. Joseph College, Tiruchy for providing Microhardness and PL measurement. M. Lydia Caroline thanks TANSCHE for extending financial support for this present work through a grant to MINOR RESEARCH PROJECT RC No. 1740/2021A.

Funding

This work was supported by TANSCHE in extending financial support for this work through a grant to MINOR RESEARCH PROJECT RC. No. 1740/2021A. M. Lydia Caroline, Assistant Professor, Department of Physics, Dr. Ambedkar Govt Arts College, Vyasarpadi, Chennai has received research support from TANSCHE MINOR RESEARCH PROJECT.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection and analysis were performed by MLC, ADR, MN, CRTK, PR, PS, GV, SK. The first draft of the manuscript was written by MLC, ADR and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Lydia Caroline.

Ethics declarations

Conflict of interest

M. Lydia Caroline, Assistant Professor, Department of Physics, Dr. Ambedkar Govt Arts College, Vyasarpadi, Chennai has received financial support for this work from TANSCHE through a grant to MINOR RESEARCH PROJECT RC. No. 1740/2021A.

Ethical approval

All authors have seen and approved the manuscript being submitted & have no conflict of interest. We affirm that the manuscript submitted has been prepared according to the Journal’s instruction and the content of the manuscript has not been published in any refereed journal. M. Lydia Caroline, Assistant Professor, Department of Physics, Dr. Ambedkar Govt Arts College, Vyasarpadi, Chennai has received financial support for this work from TANSCHE through a grant to MINOR RESEARCH PROJECT RC. No. 1740/ 2021A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilli Rani, A., Nageshwari, M., Rathika Thaya Kumari, C. et al. Crystal growth, optical, luminescence, SHG and THG exploration of an inorganic noncentrosymmetric alkaline borate crystal: K2B4O5(OH)4·3·6H2O(KBOH) for photonic and optical limiting applications. J Mater Sci: Mater Electron 34, 1476 (2023). https://doi.org/10.1007/s10854-023-10872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10872-2

Navigation