Skip to main content
Log in

Bandgap reduction in rGO-doped CsTiBr3 perovskite nanorods by solvothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The perovskites with ABX3 structure is commonly known as halide perovskites if X anion is a halide(X = Cl, Br, I). The lead free halide perovskite of CsTiBr3 is a stable and wide bandgap semiconductor. In the present work all-inorganic perovskite of pure and reduced graphene oxide (rGO) doped CsTiBr3 is synthesized by solvothermal method. The XRD analysis confirms the formation of CsTiBr3. The Raman spectrum shows that the doping agent GO exist as reduced graphene oxide (rGO) in the doped sample. Each grains of the sample are formed by spherical balls of closely packed nanorods. Structural modification could achieve through rGO doping. The scattered nanorods of CsTiBr3 which are not participating in spherical ball formation are wrapped up by the sheets of reduced graphene oxide (rGO) in the doped sample. The two dimensional sheet like structure and the semiconducting nature of rGO enhances the electrical properties of CsTiBr3. The conductivity of the CsTiBr3 has been improved and the activation energy dropped from 3.1 kJ/mol to 2.06 kJ/mol by 0.5% rGO doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data will be made available by the corresponding author on request.

References

  1. C.C. Stoumpos, M.G. Kanatzidis, Adv. Mater. 28, 5778 (2016)

    Article  CAS  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  3. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 354, 206 (2016)

    Article  CAS  Google Scholar 

  4. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 138, 15829 (2016)

    Article  CAS  Google Scholar 

  5. Q. van Le, H.W. Jang, S.Y. Kim, Small Methods 2, 1700419 (2018)

    Article  Google Scholar 

  6. A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Science 354, 92 (2016)

    Article  CAS  Google Scholar 

  7. H. Fu, Sol. Energy Mater. Sol. Cells 193, 107 (2019)

    Article  CAS  Google Scholar 

  8. Z. Zhang, Z. Chen, J. Zhang, W. Chen, J. Yang, X. Wen, B. Wang, N. Kobamoto, L. Yuan, J.A. Stride, G.J. Conibeer, R.J. Patterson, S. Huang, Adv. Energy Mater. 7, 1601773 (2017)

    Article  Google Scholar 

  9. X. Wang, T. Li, B. Xing, M. Faizan, K. Biswas, L. Zhang, J. Phys. Chem. Lett. 12, 10532 (2021)

    Article  CAS  Google Scholar 

  10. V.G. Sreeja, G. Vinitha, R. Reshmi, M.K. Jayaraj, E.I. Anila, Mater. Today Proc. 10, 456 (2019)

    Article  CAS  Google Scholar 

  11. A. Timoumi, Graphene 07, 31 (2018)

    Article  CAS  Google Scholar 

  12. Y. Jin, Y. Zheng, S.G. Podkolzin, W. Lee, J. Mater. Chem. C 8, 4885 (2020)

    Article  CAS  Google Scholar 

  13. S. Sadhukhan, T.K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, D. Chattopadhyay, Mater. Res. Bull. 79, 41 (2016)

    Article  CAS  Google Scholar 

  14. A. Galal, H.K. Hassan, N.F. Atta, A.M. Abdel-Mageed, T. Jacob, Sci. Rep. 9, 7948 (2019)

    Article  Google Scholar 

  15. A. Merazga, J. Al-Zahrani, A. Al-Baradi, B. Omer, A. Badawi, S. Al-Omairy, Mater. Sci. Eng. B. 259, 114581 (2020)

    Article  CAS  Google Scholar 

  16. S. Mangavati, A. Rao, D. Devadiga, M. Selvakumar, K.P. Misra, A. Upadhyaya, S. Chattopadhyay, Diam. Relat. Mater. 123, 108886 (2022)

    Article  CAS  Google Scholar 

  17. M. Aqeel, S. Anjum, M. Imran, M. Ikram, H. Majeed, M. Naz, S. Ali, M.A. Ahmad, Mater. Res. Exp. 6, 086215 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge DST-SERB and KSCSTE for the financial support.

Funding

The authors received financial support from DST-SERB (CRG/2018/003785) and KSCSTE (325/2022).

Author information

Authors and Affiliations

Authors

Contributions

The material preparation, data collection, analysis and interpretation of results and manuscript construction was done by KABB under the supervision of corresponding author RR. All the co-authors have contributed for the preparation of the manuscript.

Corresponding author

Correspondence to R. Reshmi.

Ethics declarations

Conflict of interest

All the authors of this manuscript declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beegum, K.A.B., Thomas, C., Sasi, S. et al. Bandgap reduction in rGO-doped CsTiBr3 perovskite nanorods by solvothermal method. J Mater Sci: Mater Electron 34, 1493 (2023). https://doi.org/10.1007/s10854-023-10869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10869-x

Navigation