Skip to main content
Log in

Resistive switching in ZnO/MoOx bilayer for non-volatile memory applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Memory technologies are essential for transferring and preserving data. As the digital age progressed, memory device size, speed and efficiency were tuned to address the new demands. Resistive random access memory (RRAM) devices are promising candidates for future memory applications and have many advantages, such as scaling, speed, and endurance over conventional flash memory. In this work, bilayer metal oxide (MoOx/ZnO) devices are fabricated with Ag and ITO as top and bottom electrodes and their resistive switching characteristics are investigated for non-volatile memory applications. I–V characteristics of the device are analysed for the characteristic pinched hysteresis loop where bipolar switching has been observed with set voltage at 1.1 V and reset voltage at \(-\) 0.8 V. The field-dependent migration of oxygen vacancies in metal oxide layers accounts for the bipolar switching mechanism. The conduction mechanism for ITO/ZnO/MoOx/Ag device is studied, revealing ohmic conduction in the low voltage region while space charge limited conduction dominates in the high voltage region. Furthermore, the fabricated device shows excellent retention. Conclusively, this study suggests that the device switches at comparatively lower voltages and has remarkable data retention properties with the addition of MoOx layer over ZnO layer. Since the device shows excellent endurance and data retention properties, the fabricated device can be a good candidate for non-volatile memory applications such as RRAM and neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon request.

References

  1. T.W. Hickmott, J. Appl. Phys. 33, 2669 (1962)

    Article  CAS  Google Scholar 

  2. H. Akinaga, H. Shima, Proc. IEEE 98, 2237 (2010)

    Article  CAS  Google Scholar 

  3. A. Sawa, Mater. Today. 11, 28 (2008)

    Article  CAS  Google Scholar 

  4. A. Makarov, V. Sverdlov, S. Selberherr, J. Comput. Electron. 9, 146 (2010)

    Article  CAS  Google Scholar 

  5. J. Kim, K. Jung, Y. Kim, Y. Jo, S. Cho, H. Woo, S. Lee, A.I. Inamdar, J. Hong, J.-K. Lee, H. Kim, H. Im, Sci. Rep. 6, 23930 (2016)

    Article  CAS  Google Scholar 

  6. K.M. Kim, B.J. Choi, C.S. Hwang, Appl. Phys. Lett. 90, 242906 (2007)

    Article  Google Scholar 

  7. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)

    Article  CAS  Google Scholar 

  8. M.H. Tang, Z.P. Wang, J.C. Li, Z.Q. Zeng, X.L. Xu, G.Y. Wang, L.B. Zhang, Y.G. Xiao, S.B. Yang, B. Jiang, J. He, Semicond. Sci. Technol. 26, 075019 (2011)

    Article  Google Scholar 

  9. P.A. Feng, C.H. Chao, Z.S. Wang, Y.C. Yang, Y.A. Jing, Z.E. Fei, Prog. Nat. Sci. 20, 1 (2010)

    Article  Google Scholar 

  10. E. Lim, R. Ismail, Electron 4, 586 (2015)

    Article  CAS  Google Scholar 

  11. S. Tsui, A. Baikalov, J. Cmaidalka, Y.Y. Sun, Y.Q. Wang, Y.Y. Xue, C.W. Chu, L. Chen, A.J. Jacobson, Appl. Phys. Lett. 85, 317 (2004)

    Article  CAS  Google Scholar 

  12. J. Yoon, H. Choi, D. Lee, J.B. Park, J. Lee, D.J. Seong, Y. Ju, M. Chang, S. Jung, H. Hwang, IEEE Electron Device Lett. 30, 457 (2009)

    Article  CAS  Google Scholar 

  13. C.-Y. Huang, C.-Y. Huang, T.-L. Tsai, C.-A. Lin, T.-Y. Tseng, Appl. Phys. Lett. 104, 062901 (2014)

    Article  Google Scholar 

  14. D. Ielmini, H.-S.P. Wong, Nat. Electron. 1, 333 (2018)

    Article  Google Scholar 

  15. P.S. Subin, P.S. Midhun, A. Antony, K.J. Saji, M.K. Jayaraj, Mater. Today Commun. 33, 104232 (2022)

    Article  CAS  Google Scholar 

  16. T. Ivanova, K. Gesheva, A. Szekeres, J. Solid State Electrochem. 7, 21–24 (2002). https://doi.org/10.1007/s10008-002-0274-7

    Article  CAS  Google Scholar 

  17. F.M. Simanjuntak, T. Ohno, S. Samukawa, AIP Adv. 9, 105216 (2019)

    Article  Google Scholar 

  18. P.S. Subin, K.J. Saji, M.K. Jayaraj, Thin Solid Films. 737, 138924 (2021)

    Article  CAS  Google Scholar 

  19. C. Wang, H. Wu, B. Gao, T. Zhang, Y. Yang, H. Qian, Microelectron. Eng. 187–188, 121–133 (2018). https://doi.org/10.1016/j.mee.2017.11.003

    Article  CAS  Google Scholar 

  20. P.S. Subin, A. Antony, K.J. Saji, M.K.E. Jayaraj, Adv. Electron. Mater. 8, 2200729 (2022)

    Article  CAS  Google Scholar 

  21. J. Choi, S. Park, J. Lee, K. Hong, D. Kim, C.W. Moon, G. Do Park, J. Suh, J. Hwang, S.Y. Kim, Adv. Mater. 28, 6562 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge DST-FIST for FESEM and ellipsometry facility at the Department of Physics, Cochin University of Science and Technology, Kochi, Kerala, India. Authors would also like to thank DST SERB for the financial support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors SM, AS and PSS have contributed to preparing the manuscript. The materials preparation, device fabrication, data collection, interpretation and the first draft of the manuscript construction were written by SM, PSS, and AS contributed to the analysis and interpretation of data. AA contributed to the conceptualisation, supervision, data curation, writing a review and editing of the manuscript. All authors have read and approved the final manuscript for publication.

Corresponding author

Correspondence to Aldrin Antony.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoj, S., Sharon, A., Subin, P.S. et al. Resistive switching in ZnO/MoOx bilayer for non-volatile memory applications. J Mater Sci: Mater Electron 34, 1472 (2023). https://doi.org/10.1007/s10854-023-10868-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10868-y

Navigation