Skip to main content
Log in

Investigation of performance enhancement of a recessed gate field-plated AlGaN/AlN/GaN nano-HEMT on β-Ga2O3 substrate with variation of AlN spacer layer thickness

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research article, a recessed field-plated gate AlGaN/GaN-based nano-high electron mobility transistor (HEMT) grown on a β-Ga2O3 substrate is designed with and without insertion of AlN layer between AlGaN and GaN layers. The impact of intended AlN layer on the proposed HEMT’s carrier transport features, DC, and RF characteristics are discussed in this study. The outcome shows that introducing a thin AlN spacer layer induces the location of two-dimensional electron gas (2DEG) to shift away from AlGaN/GaN interface. Furthermore, the influence of different AlN thicknesses is studied. It has been observed that the 2DEG concentration rises as AlN layer thickness increases. In general, the mobility of 2DEG is reduced in typical HEMTs due to scatterings induced by alloy and interface roughness. The outcomes demonstrated that a 2 nm-thick AlN layer exhibited the least amount of interface scattering, which results into highest charge carrier mobility. The proposed nano-HEMT demonstrated an enhanced transport, DC and RF properties with the utilization of a lower lattice mismatched β-Ga2O3 material as a substrate, and the positioning of an AlN layer of thickness 2 nm between upper Al0.3Ga0.7N barrier and GaN buffer layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L. Nela, C. Erine, M.V. Oropallo, E. Matioli, IEEE J. Electron Devices Soc. 9, 1066–1075 (2021). https://doi.org/10.1109/JEDS.2021.3125742

    Article  CAS  Google Scholar 

  2. K. Li, S. Rakheja, Gall. Nitride Mater. Devices XII 10104, 1010418 (2017). https://doi.org/10.1117/12.2251582

    Article  Google Scholar 

  3. S. Ganguly et al., IEEE Int. Reliab. Phys. Symp. Proc. 2022, 11B51-11B56 (2022). https://doi.org/10.1109/IRPS48227.2022.9764539

    Article  Google Scholar 

  4. G. Purnachandra Rao, R. Singh, T.R. Lenka, HEMT Technology and Applications (Springer, Singapore, 2023), pp.139–153. https://doi.org/10.1007/978-981-19-2165-0_11

    Book  Google Scholar 

  5. H. Wu, X. Fu, Y. Wang, J. Guo, J. Shen, S. Hu, Results Phys. 29, 104768 (2021). https://doi.org/10.1016/j.rinp.2021.104768

    Article  Google Scholar 

  6. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, J. Appl. Phys. 85(6), 3222–3233 (1999). https://doi.org/10.1063/1.369664

    Article  CAS  Google Scholar 

  7. R. Ranjan, N. Kashyap, A. Raman, Electronic Systems and Intelligent Computing, vol. 686 (Springer, Singapore, 2020), pp.1115–1121

    Book  Google Scholar 

  8. R.K. Kaneriya, C. Karmakar, G. Rastogi, M.R. Patel, R.B. Upadhyay, Microelectron. Eng. 255, 111724 (2022). https://doi.org/10.1016/j.mee.2022.111724

    Article  CAS  Google Scholar 

  9. U.K. Mishra, P. Parikh, Y.F. Wu, Proc. IEEE 90(6), 1022–1031 (2002). https://doi.org/10.1109/JPROC.2002.1021567

    Article  CAS  Google Scholar 

  10. P. Gamarra, C. Lacam, M. Tordjman, M.A. Di Forte-Poisson, J. Cryst. Growth 370, 282–287 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.001

    Article  CAS  Google Scholar 

  11. W.A. Melton, J.I. Pankove, J. Cryst. Growth 178(1–2), 168–173 (1997). https://doi.org/10.1016/S0022-0248(97)00082-1

    Article  CAS  Google Scholar 

  12. S.Y. Ren, J.D. Dow, Appl. Phys. Lett. 69(2), 251–253 (1996). https://doi.org/10.1063/1.117940

    Article  CAS  Google Scholar 

  13. E.G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, T. Ujiie, Appl. Phys. Lett. 90(23), 4–7 (2007). https://doi.org/10.1063/1.2745645

    Article  CAS  Google Scholar 

  14. D. Shivani, A.G. Kaur, M. Kumar, Mater. Today Commun. 33, 104244 (2022). https://doi.org/10.1016/j.mtcomm.2022.104244

    Article  CAS  Google Scholar 

  15. R. Qiao, H. Zhang, S. Zhao, L. Yuan, R. Jia, J. Phys. D. Appl. Phys. (2022). https://doi.org/10.1088/1361-6463/ac7c44

    Article  Google Scholar 

  16. G.P. Rao, T.R. Lenka, R. Singh, H.P.T. Nguyen, J. Korean Phys. Soc. (2022). https://doi.org/10.1007/s40042-022-00603-x

    Article  Google Scholar 

  17. M. Higashiwaki, K. Sasaki, H. Murakami, Semicond. Sci. Technol. 31(3), 034001 (2016). https://doi.org/10.1088/0268-1242/31/3/034001

    Article  CAS  Google Scholar 

  18. W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, IEEE Trans. Electron Devices 53(2), 356–362 (2006). https://doi.org/10.1109/TED.2005.862708

    Article  CAS  Google Scholar 

  19. P.S. Sreelekshmi, J. Jacob, Micro Nanostructures 168, 207330 (2022). https://doi.org/10.1016/j.micrna.2022.207330

    Article  CAS  Google Scholar 

  20. J. Li, Y. Yin, N. Zeng, F. Liao, M. Lian, X. Zhanet, Superlattices Microstruct. 161, 107064 (2022). https://doi.org/10.1016/j.spmi.2021.107064

    Article  CAS  Google Scholar 

  21. T. Hashizume, K. Nishiguchi, S. Kaneki, J. Kuzmik, Z. Yatabe, Mater. Sci. Semicond. Process. 78, 85–95 (2018). https://doi.org/10.1016/j.mssp.2017.09.028

    Article  CAS  Google Scholar 

  22. Y. Xie, M. Zhu, J. Deng, Y. Chen, Microelectron. Eng. 253, 111675 (2022). https://doi.org/10.1016/j.mee.2021.111675

    Article  CAS  Google Scholar 

  23. S. Chander, S. Gupta, M. Gupta, Superlattices Microstruct. 120, 217–222 (2018). https://doi.org/10.1016/j.spmi.2018.05.039

    Article  CAS  Google Scholar 

  24. A. Malmros, P. Gamarra, M. Thorsell, IEEE Trans. Electron Devices 66(1), 364–371 (2019). https://doi.org/10.1109/TED.2018.2881319

    Article  CAS  Google Scholar 

  25. G.P. Rao, R. Singh, T.R. Lenka, HEMT Technology and Applications (Springer, Singapore, 2023), pp.105–114. https://doi.org/10.1007/978-981-19-2165-0_8

    Book  Google Scholar 

  26. Z. Galazka, J. Appl. Phys. 131(3), 031103 (2022). https://doi.org/10.1063/5.0076962

    Article  CAS  Google Scholar 

  27. M. Higashiwaki, AAPPS Bull. (2022). https://doi.org/10.1007/s43673-021-00033-0

    Article  Google Scholar 

  28. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Jpn. J. Appl. Phys. 55(12), 1202A2 (2016). https://doi.org/10.7567/JJAP.55.1202A2

    Article  CAS  Google Scholar 

  29. E.G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270(3–4), 420–426 (2004). https://doi.org/10.1016/j.jcrysgro.2004.06.027

    Article  CAS  Google Scholar 

  30. Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, M. Bickermann, ECS J. Solid State Sci. Technol. 6(2), Q3007–Q3011 (2017). https://doi.org/10.1149/2.0021702jss

    Article  CAS  Google Scholar 

  31. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Jpn. J. Appl. Phys. 47(11), 8506–8509 (2008). https://doi.org/10.1143/JJAP.47.8506

    Article  CAS  Google Scholar 

  32. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J.K. Marko, J. Tadjer, M.A. Mastro, Appl. Phys. Rev 51(10), 11301–13504 (2018). https://doi.org/10.1063/1.5006941

    Article  CAS  Google Scholar 

  33. Z. Wang, Z. Wang, Z. Zhang, D. Yang, Y. Yao, Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-2960-8

    Article  Google Scholar 

  34. Y. Zheng, E. Swinnich, J.H. Seo, ECS J. Solid State Sci. Technol. 9(5), 055007 (2020). https://doi.org/10.1149/2162-8777/ab981e

    Article  CAS  Google Scholar 

  35. Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, Appl. Phys. Lett. 106(11), 111909 (2015). https://doi.org/10.1063/1.4916078

    Article  CAS  Google Scholar 

  36. P. Jiang, X. Qian, X. Li, R. Yang, Appl. Phys. Lett. 113(23), 232105 (2018). https://doi.org/10.1063/1.5054573

    Article  CAS  Google Scholar 

  37. Silvaco, ATLAS user’s manual (Silvaco, Santa Clara, 1998), pp.567–1000

    Google Scholar 

  38. Z. Xia, H. Xue, C. Joishi, J. McGlone, N.K. Kalarickal, IEEE Electron Device Lett. 40(7), 1052–1055 (2019). https://doi.org/10.1109/LED.2019.2920366

    Article  CAS  Google Scholar 

  39. K. Jena, R. Swain, T.R. Lenka, J. Electron. Mater. 45(4), 2172–2177 (2016). https://doi.org/10.1007/s11664-015-4296-1

    Article  CAS  Google Scholar 

  40. Y. Cheng, Y. Wang, S. Feng, Z. Zheng, T. Chen, G. Lyu, Y.H. Ng, Appl. Phys. Lett. (2021). https://doi.org/10.1063/5.0048068

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Department of Science and Technology (DST)-Science and Engineering Research Board (SERB), Govt. of India sponsored Mathematical Research Impact Centric Support (MATRICS) project no. MTR/2021/000370 for support.

Funding

This research was supported by Department of Science and Technology (DST)-Science and Engineering Research Board (SERB), Govt. of India sponsored Mathematical Research Impact Centric Support (MATRICS) project.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. GPR designed Research and Methodology, performed Simulation work, analyzed data, and wrote the paper. TRL contributed the Idea and Concept, Resources, and Funding acquisition and analyzed data. NEIB contributed to data analysis and revision. SMS contributed to data analysis and revision, and HPTN focused on Resources, Data analysis, and English improvement. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Trupti Ranjan Lenka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors formally declare that the present paper is compiled with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, G.P., Lenka, T.R., Boukortt, N.E.I. et al. Investigation of performance enhancement of a recessed gate field-plated AlGaN/AlN/GaN nano-HEMT on β-Ga2O3 substrate with variation of AlN spacer layer thickness. J Mater Sci: Mater Electron 34, 1442 (2023). https://doi.org/10.1007/s10854-023-10867-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10867-z

Navigation