Skip to main content
Log in

Large enhancement of dielectric properties in polyetherimide-based nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In two composition ranges of nanocomposites, anomalous enhancement of the dielectric property of polyetherimide (PEI, dielectric constant ~ 3.2) by adding Al2O3 nanoparticles (dielectric constant ~ 9–10), which have dielectric properties comparable to PEI, was found. At a low filling ratio (< 0.8 vol%), the dielectric constant of the nanocomposites exhibits a maximum value (∼ 3.8) in composites with 0.3 vol% nanoparticles. When the volume fraction of nanofillers exceeds 0.8 vol%, the dielectric properties can be continuously enhanced by adding Al2O3; in composites containing 20 vol% Al2O3, the dielectric constant can reach 8.5, which is more than twice that of the pristine polymer. The dielectric loss of the composites studied remains low (< 0.02). When Al2O3 nanoparticles are replaced with MgO nanoparticles, the behavior persists, indicating that it is a general phenomenon in PEI nanocomposites. The experimental findings suggest that the improved dielectric properties observed in nanocomposites with high nanoparticle loading can be attributed to increased free volume. The unexpected expansion of the nanocomposite volume shows that adding nanoparticles may introduce more free volume into the polymer, boosting the activity of polar functional groups in the polymer and resulting in a more robust dielectric response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Zhang, Z. Ma, Q. Fu, H. Deng, Mater. Today Energy. 29, 101093 (2022)

    Article  CAS  Google Scholar 

  2. J. Dong, R. Hu, Y. Niu, L. Sun, L. Li, S. Li, D. Pan, X. Xu, R. Gong, J. Cheng, Z. Pan, Q. Wang, H. Wang, Nano Energy. 99, 107314 (2022)

    Article  CAS  Google Scholar 

  3. T. Zhang, X. Chen, Y. Thakur, B. Lu, Q. Zhang, J. Runt, Q.M. Zhang, Sci. Adv. 6, eaax6622 (2020)

    Article  CAS  Google Scholar 

  4. A. Azizi, M.R. Gadinski, Q. Li, M.A. AlSaud, J. Wang, Y. Wang, B. Wang, F. Liu, L.-Q. Chen, N. Alem, Q. Wang, Adv. Mater. 29, 1701864 (2017)

    Article  Google Scholar 

  5. J. Mao, S. Wang, Y. Cheng, B. Xiao, L. Zhang, D. Ai, Y. Chen, W. Sun, J. Luo, Chem. Eng. J. 444, 136331 (2022)

    Article  CAS  Google Scholar 

  6. Y. Jiang, J. Wang, S. Yan, Z. Shen, L. Dong, S. Zhang, X. Zhang, C.-W. Nan, Adv. Funct. Mater. 32, 2200848 (2022)

    Article  CAS  Google Scholar 

  7. Y. Niu, J. Dong, Y. He, X. Xu, S. Li, K. Wu, Q. Wang, H. Wang, Nano Energy. 97, 107215 (2022)

    Article  CAS  Google Scholar 

  8. H. Bai, G. Ge, F. Yan, K. Zhu, J. Lin, C. Shi, J. Qian, Z. Wang, B. Shen, J. Zhai, Energy Storage Mater. 46, 503 (2022)

    Article  Google Scholar 

  9. Q. Chi, Y. Zhou, Y. Feng, Y. Cui, Y. Zhang, T. Zhang, Q. Chen, Mater. Today Energy. 18, 100516 (2020)

    Article  CAS  Google Scholar 

  10. K. Zhang, Z. Ma, H. Deng, Q. Fu, Adv. Compos. Hybrid Mater. 5, 238 (2022)

    Article  CAS  Google Scholar 

  11. L. Li, J. Dong, R. Hu, X. Chen, Y. Niu, H. Wang, Chem. Eng. J. 435, 135059 (2022)

    Article  CAS  Google Scholar 

  12. Y. Li, Y. Zhou, Y. Zhu, S. Cheng, C. Yuan, J. Hu, J. He, Q. Li, J. Mater. Chem. A 8, 6576 (2020)

    Article  CAS  Google Scholar 

  13. Y. Thakur, T. Zhang, C. Iacob, T. Yang, J. Bernholc, L.Q. Chen, J. Runt, Q.M. Zhang, Nanoscale. 9, 10992 (2017)

    Article  CAS  Google Scholar 

  14. M. Singh, I.E. Apata, S. Samant, W. Wu, B.V. Tawade, N. Pradhan, D. Raghavan, A. Karim, Polym. Rev. 62, 211 (2022)

    Article  CAS  Google Scholar 

  15. W. Zheng, L. Ren, X. Zhao, H. Li, Z. Xie, Y. Li, C. Wang, L. Yu, L. Yang, R. Liao, Compos. Sci. Technol. 222, 109379 (2022)

    Article  CAS  Google Scholar 

  16. Z.-M. Dang, J.-K. Yuan, S.-H. Yao, R.-J. Liao, Adv. Mater. 25, 6334 (2013)

    Article  CAS  Google Scholar 

  17. G. Cao, W. Zhou, Y. Li, P. Liu, T. Yao, J. Li, J. Zuo, J. Cai, Y. Li, J. Mater. Sci: Mater. Electron. 33, 9951 (2022)

    CAS  Google Scholar 

  18. Y. Bai, Z.-Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2000)

    Article  CAS  Google Scholar 

  19. D.Q. Tan, Adv. Funct. Mater. 30, 1808567 (2020)

    Article  CAS  Google Scholar 

  20. B. Chu, M. Lin, B. Neese, Q. Zhang, J. Appl. Phys. 105, 014103 (2009)

    Article  Google Scholar 

  21. B.-K. Chen, C.-T. Su, M.-C. Tseng, S.-Y. Tsay, Polym. Bull. 57, 671 (2006)

    Article  CAS  Google Scholar 

  22. G. Sui, B. Li, G. Bratzel, L. Baker, W.-H. Zhong, X.-P. Yang, Soft Matter. 5, 3593 (2009)

    Article  CAS  Google Scholar 

  23. Z. Li, L.A. Fredin, P. Tewari, S.A. DiBenedetto, M.T. Lanagan, M.A. Ratner, T.J. Marks, Chem. Mater. 22, 5154 (2010)

    Article  CAS  Google Scholar 

  24. Y. Qiao, M. Salviato, Eng. Fract. Mech. 213, 100 (2019)

    Article  Google Scholar 

  25. V. Myroshnychenko, C. Brosseau, J. Appl. Phys. 97, 044101 (2005)

    Article  Google Scholar 

  26. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science. 313, 334 (2006)

    Article  CAS  Google Scholar 

  27. J. Li, X. Liu, Y. Feng, J. Yin, Prog. Polym. Sci. 126, 101505 (2022)

    Article  CAS  Google Scholar 

  28. Y. Thakur, B. Zhang, R. Dong, W. Lu, C. Iacob, J. Runt, J. Bernholc, Q.M. Zhang, Nano Energy. 32, 73 (2017)

    Article  CAS  Google Scholar 

  29. Q. Zhang, X. Chen, T. Zhang, Q.M. Zhang, Nano Energy. 64, 103916 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0701301 and 2020YFA0711502).

Author information

Authors and Affiliations

Authors

Contributions

JZ: Investigation, experimental work, analysis, writing—original draft, validation, and data curation. YC: Investigation, experimental work, analysis, writing—original draft, validation, and data curation. BC: Conceptualization, supervision, analysis, writing, and funding acquisition.

Corresponding author

Correspondence to Baojin Chu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, J., Che, Y. & Chu, B. Large enhancement of dielectric properties in polyetherimide-based nanocomposites. J Mater Sci: Mater Electron 34, 1433 (2023). https://doi.org/10.1007/s10854-023-10865-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10865-1

Navigation