Skip to main content
Log in

PTFE/SiO2 composite ink for direct ink writing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Direct ink writing (DIW) has emerged as the most versatile 3D printing technique for advanced Radio Frequency (RF) device development. And polytetrafluoroethylene (PTFE)-based composites attract much research interest as a fundamental material for RF devices because of their excellent properties. However, the high viscosity and insolubility of PTFE hinder the DIW method applied in PTFE-based RF device manufacturing. Herein we develop an agent-free PTFE/SiO2 composite ink by using fibrillation of PTFE, and the print parameters of the ink are optimized. The continual PTFE fiber networks in the slurry ink make it printable. Benefiting from encapsulating the SiO2 particles by PTFE fiber networks, the interface adhesion between the filler and matrix in the composites is strengthened and the outstanding dielectric properties (dielectric constant is 2.33, dielectric loss is < 2.0 × 10− 3 in the range of 5–40 GHz) are obtained. Moreover, the low shrinkage (3.74%) during the process provides good shape accuracy for device manufacturing. A promising DIW method and ink for PTFE-based RF devices are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S.A. Nauroze, J.G. Hester, B.K. Tehranani, W.J. Su, J. Bito, R. Bahr, J. Kimionis, M.M. Tentzeris, Proc. IEEE. 105(4), 702–722 (2017)

    Article  CAS  Google Scholar 

  2. A.I. Dimitriadis, T. Debogovic, M. Favre, M. Billod, L. Barloggio, J.P. Ansermet, E. de Rijk, Proc. IEEE. 105(4), 668–676 (2017)

    Article  CAS  Google Scholar 

  3. M. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram, A.J. Hart, P.M. Ajayan, M.M. Rahman, Adv. Mater. 34(28), 2108855 (2022)

    Article  CAS  Google Scholar 

  4. R.H. Guan, H.Y. Zheng, Q.X. Liu, K.T. Ou, D.S. Li, J. Fan, Q. Fu, Y.Y. Sun, Compos. Sci. Technol. 223, 109409 (2022)

    Article  CAS  Google Scholar 

  5. J. Yan, S.Z. Huang, Y. Von Lim, T.T. Xu, D.Z. Kong, X.J. Li, H.Y. Yang, Y. Wang, Mater. Today. 54, 110–152 (2022)

    Article  Google Scholar 

  6. G.Y. Yang, Y.Y. Sun, L.M. Qin, M.R. Li, K.T. Ou, J. Fang, Q. Fu, Compos. Sci. Technol. 215, 109013 (2021)

    Article  CAS  Google Scholar 

  7. G. Shi, S.E. Lowe, A.J.T. Teo, T.K. Dinh, S.H. Tan, J.D. Qin, Y.B. Zhang, Y.L. Zhong, H.J. Zhao, Appl. Mater. Today. 16, 482–492 (2019)

    Article  Google Scholar 

  8. A.C.H. Tsang, J.T. Zhang, K.N. Hui, K.S. Hui, H.B. Huang, Adv. Mater. Technol. 7(7), 2101358 (2022)

    Article  Google Scholar 

  9. J. Ma, P. Wang, L. Dong, Y. Ruan, H. Lu, J. Colloid Interface Sci. 534, 12–19 (2019)

    Article  CAS  Google Scholar 

  10. T.V. Neumann, M.D. Dickey, Adv. Mater. Technol. 5(9), 2000070 (2020)

    Article  CAS  Google Scholar 

  11. S.J. Wang, L. Wang, B. Wang, H.Z. Su, W. Fan, X.L. Jing, Polymer. 233, 124214 (2021)

    Article  CAS  Google Scholar 

  12. A. Huang, F. Liu, Z.X. Cui, H.K. Wang, X.C. Song, L.H. Geng, H.K. Wang, X.F. Peng, Compos. Sci. Technol. 214, 108980 (2021)

    Article  CAS  Google Scholar 

  13. X.Z. Cai, X.Z. Dong, W.X. Lv, C.Z. Ji, Z.Y. Jiang, X.R. Zhang, T. Gao, K. Yue, X.X. Zhang, Compos. Commun. 17, 163–169 (2020)

    Article  Google Scholar 

  14. K.P. Murali, S. Rajesh, O. Prakash, A.R. Kulkarni, R. Ratheesh, Mater. Chem. Phys. 113(1), 290–295 (2009)

    Article  CAS  Google Scholar 

  15. T.S. Sasikala, M.T. Sebastian, Ceram. Intl. 42(6), 7551–7563 (2016)

    Article  CAS  Google Scholar 

  16. C. Pan, K.C. Kou, Y. Zhang, Z.Y. Li, T.Z. Ji, G.L. Wu, Mater. Sci. Eng. B 238, 61–70 (2018)

    Article  Google Scholar 

  17. A.B. Ariawan, S. Ebnesajjad, S.G. Hatzikiriakos, Polym. Eng. Sci. 42(6), 1247–1259 (2002)

    Article  CAS  Google Scholar 

  18. I. Ochoa, S.G. Hatzikiriakos, Powder Technol. 153(2), 108–118 (2005)

    Article  CAS  Google Scholar 

  19. I. Ochoa, S.G. Hatzikiriakos, Powder Technol. 146(1–2), 73–83 (2004)

    Article  CAS  Google Scholar 

  20. A.B. Ariawan, S. Ebnesajjad, S.G. Hatzikiriakos, Can. J. Chem. Eng. 80(6), 1153–1165 (2002)

    Article  CAS  Google Scholar 

  21. Z. Jiang, O. Erol, D. Chatterjee, W. Xu, N. Hibino, L.H. Romer, S.H. Kang, D.H. Gracias, ACS Appl. Mater. Interfaces. 11(31), 28289–28295 (2019)

    Article  CAS  Google Scholar 

  22. Y. Zhang, M.J. Yin, X. Ouyang, A.P. Zhang, H.Y. Tam, Appl. Mater. Today. 19, 100580 (2020)

    Article  Google Scholar 

  23. R. Zheng, Y. Chen, H. Chi, H. Qiu, H. Xue, H. Bai, ACS Appl. Mater. Interfaces. 12(51), 57441–57449 (2020)

    Article  CAS  Google Scholar 

  24. G.A. Schmidt, Y.J. Lin, Y. Xu, D. Wang, G. Yilmaz, L.S. Polym. Eng. Sci. 61(4), 1050–1065 (2021)

    Article  CAS  Google Scholar 

  25. T. Tomkovic, S.G. Hatzikiriakos, Can. J. Chem. Eng. 98(9), 1852–1865 (2020)

    Article  CAS  Google Scholar 

  26. M. Ansari, D. Vavlekas, J.L. McCoy, S.G. Hatzikiriakos, Int. Polym. Proc. 30(5), 603–614 (2015)

    Article  CAS  Google Scholar 

  27. H.A. Ardakani, E. Mitsoulis, S.G. Hatzikiriakos, Int. Polym. Proc. 28(3), 306–313 (2013)

    Article  CAS  Google Scholar 

  28. J.M. Lee, W.Y. Yeong, Virtual Phys. Prototyp. 10(1), 3–8 (2014)

    Article  Google Scholar 

  29. R.W. Sillars, J. Inst. Electr. Eng. 80(35), 139–155 (1937)

    Google Scholar 

  30. W. Jin, A. Li, Y. Li, Y. Yu, J. Shen, J. Zhou, W. Chen, Ceram. Int. 48, 28512–28518 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The National Science Fund for Distinguished Young Scholars of Hubei Province [Grant No. (201CFA067)]; the Key Research and Development Program of Hubei Province, Wuhan 430070, Hubei, P. R. China [Grant No. (2021BAA214)].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Zhixiang Liao, Haoran Wei and Qiangzhi Li,. The first draft of the manuscript was written by Zhixiang Liao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jie Shen.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Wei, H., Li, Q. et al. PTFE/SiO2 composite ink for direct ink writing. J Mater Sci: Mater Electron 34, 1438 (2023). https://doi.org/10.1007/s10854-023-10864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10864-2

Navigation