Skip to main content
Log in

MOF-derived Co/ZnO/C nanocomposites with excellent microwave absorption properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles combined with semiconductive metal oxides are considered to be ideal candidates for electromagnetic wave absorption materials, benefiting from suitable conductivity, matched magnetism and strong polarization. In this work, Co–ZnO binary MOF (ZIF-67, ZIF-8)-based carbon composites were fabricated via a facile synthesis route. After optimization of composition and technological parameters, the synthesized nanocomposites acquired optimal electromagnetic characteristics and exhibited superb microwave absorption ability. The lowest reflection loss of the Co–ZnO–C-800 sample reached − 44.8 dB at 9.2 GHz with a thickness of 2.9 mm, and the effective absorption bandwidth (EAB) was 6.95 GHz (6.59–13.54 GHz). The microwave loss mechanism of the nanocomposite material mainly involved dielectric loss and magnetic resonance absorption. This work provides an ingenious design and synthesis strategy for novel lightweight electromagnetic wave absorbers with broadband EAB and strong absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

5. References

  1. J. Liang, J. Chen, H. Shen, K. Hu, Chem. Mater. 33, 1789–1798 (2021)

    CAS  Google Scholar 

  2. Y. Liu, Z. Chen, W. Xie, S. Song, ACS Sustain. Chem. Eng. 7, 5318–5328 (2019)

    CAS  Google Scholar 

  3. L. Wang, M. Huang, X. Yu, W. You, Nanomicro Lett. 12, 150 (2020)

    CAS  Google Scholar 

  4. T. Gao, Z. Zhu, Y. Li, H. Hu, Carbon 177, 44–51 (2021)

    CAS  Google Scholar 

  5. M. Kong, X. Liu, Z. Jia, B. Wang, J. Colloid Interface Sci. 604, 39–51 (2021)

    CAS  Google Scholar 

  6. Y. Lu, Y. Wang, H. Li, Y. Lin, ACS Appl. Mater. Interfaces 7, 13604–13611 (2015)

    CAS  Google Scholar 

  7. Z. Wu, Z. Yang, K. Pei, X. Qian, Nanoscale 12, 10149–10157 (2020)

    CAS  Google Scholar 

  8. Q. Hu, R. Yang, S. Yang, W. Huang, ACS Appl. Mater. Interfaces 14, 10577–10587 (2022)

    CAS  Google Scholar 

  9. C. Liu, J. Wang, J.J. Wang, Z. Yu, Coord. Chem. Rev. 432, 213743 (2021)

    CAS  Google Scholar 

  10. J.X. Wang, J.F. Yang, J. Yang, H. Zhang, Nanotechnology 31, 394002 (2020)

    CAS  Google Scholar 

  11. L.Y. Wang, H. Xu, J.K. Gao, J.M. Yao, Coord. Chem. Rev. 398, 213016 (2019)

    Google Scholar 

  12. X. Zhang, J. Qiao, Y. Jiang, F. Wang, Nanomicro Lett. 13, 135 (2021)

    CAS  Google Scholar 

  13. L. Liu, Y. Duan, J. Guo, L. Chen, Phys. B: Condens. Matter 406, 2261–2265 (2011)

    CAS  Google Scholar 

  14. H. Zhao, X. Xu, Y. Wang, D. Fan, Small 16, 2003407 (2020)

    CAS  Google Scholar 

  15. S. Wei, T. Chen, Q. Wang, Z.C. Shi, J. Colloid Interface Sci. 593, 370–379 (2021)

    CAS  Google Scholar 

  16. Q. Liao, M. He, Y. Zhou, S. Nie, ACS Appl. Mater. Interfaces 10, 29136–29144 (2018)

    CAS  Google Scholar 

  17. W. Zhang, X. Yao, S. Zhou, X. Li, Small 14, 1800423 (2018)

    Google Scholar 

  18. W.H. Gu, J.W. Tan, J.B. Chen, Z. Zhang, ACS Appl. Mater. Interfaces 12, 28727–28737 (2020)

    CAS  Google Scholar 

  19. P. Liu, S. Gao, G. Zhang, Y. Huang, Adv. Funct. Mater. 31, 2102812 (2021)

    CAS  Google Scholar 

  20. J. Tao, J. Zhou, Z. Yao, Z. Jiao, Carbon 172, 542–555 (2021)

    CAS  Google Scholar 

  21. R.W. Shu, W.J. Li, Y. Wu, J.B. Zhang, Chem. Eng. J. 362, 513–524 (2019)

    CAS  Google Scholar 

  22. L. Wang, X.Y. Bai, B. Wen, Z. Du, Compos. Part B-Eng. 166, 464–471 (2019)

    CAS  Google Scholar 

  23. B.Y. Zhu, P. Miao, J. Kong, X.L. Zhang, Cryst. Growth. Des. 19, 1518–1524 (2019)

    CAS  Google Scholar 

  24. L.N. Huang, S.L. Huang, Z.Y. Yang, A.L. Zhao, Nanomaterials 8, 600 (2018)

    Google Scholar 

  25. X.H. Liang, B. Quan, G.B. Ji, W. Liu, ACS Sustain. Chem. Eng. 5, 10570–10579 (2017)

    CAS  Google Scholar 

  26. Q.L. Wu, H.H. Jin, W. Chen, S.Q. Huo, Mater. Res. Express 5, 065602 (2018)

    Google Scholar 

  27. P.B. Liu, S. Gao, Y. Wang, Y. Huang, ACS Appl. Mater. Interfaces 11, 25624–25635 (2019)

    CAS  Google Scholar 

  28. H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, ACS Appl. Mater. Interfaces 9, 6332–6341 (2017)

    CAS  Google Scholar 

  29. W. Feng, Y.M. Wang, J.C. Chen, B.Q. Li, J. Mater. Chem. C 6, 10–18 (2018)

    CAS  Google Scholar 

  30. J.T. Yuan, Q.C. Liu, S.K. Li, Y. Lu, Synth. Met. 228, 32–40 (2017)

    CAS  Google Scholar 

  31. X. Liu, L.S. Wang, Y.T. Ma, Y.L. Qiu, Chem. Eng. J. 333, 92–100 (2018)

    CAS  Google Scholar 

  32. X.Q. Cui, X.H. Liang, W. Liu, W.H. Gu, Chem. Eng. J. 381, 122589 (2020)

    CAS  Google Scholar 

  33. K.F. Wang, S.Z. Zhang, W.S. Chu, H. Li, J. Colloid Interface Sci. 591, 463–473 (2021)

    CAS  Google Scholar 

  34. J.Q. Tao, L.L. Xu, L. Wan, J.S. Hou, Nanoscale 13, 12896–12909 (2021)

    CAS  Google Scholar 

  35. L. Wang, X.F. Yu, X. Li, J. Zhang, Chem. Eng. J. 383, 122589 (2020)

    Google Scholar 

  36. B.H. Han, W.L. Chu, X.J. Han, P. Xu, Carbon 168, 404–414 (2020)

    CAS  Google Scholar 

  37. Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Adv. Funct. Mater. 29, 1807624 (2019)

    Google Scholar 

  38. P.B. Liu, S. Gao, Y. Wang, Y. Huang, Chem. Eng. J. 381, 122653 (2020)

    CAS  Google Scholar 

  39. Y. Qiu, Y. Lin, H.B. Yang, L. Wang, Chem. Eng. J. 383, 123207 (2020)

    CAS  Google Scholar 

  40. G.Z. Shen, Y.W. Xu, B. Liu, P. Du, J. Alloys Compd. 680, 553–559 (2016)

    CAS  Google Scholar 

  41. H.L. Xu, X.W. Yin, Z.C. Li, C.L. Liu, Nanotechnology 29, 184003 (2018)

    Google Scholar 

  42. L.J. Yang, T.W. Deng, Z.R. Jia, X.D. Zhou, J. Mater. Sci. Technol. 83, 239–247 (2021)

    CAS  Google Scholar 

  43. P.J. Liu, V.M.H. Ng, Z.J. Yao, J.T. Zhou, ACS Appl. Mater. Interfaces 9, 16404–16416 (2017)

    CAS  Google Scholar 

  44. AharoniAmikam, J. Appl. Phys. 69, 7762–7764 (1991)

    Google Scholar 

  45. J. Ouyang, Z.L. He, Y. Zhang, H.M. Yang, ACS Appl. Mater. Interfaces 11, 39304–39314 (2019)

    CAS  Google Scholar 

  46. Y.H. Wang, X.D. Li, X.J. Han, P. Xu, Chem. Eng. J. 387, 124–159 (2020)

    Google Scholar 

  47. Z.M. Man, P. Li, D. Zhou, Y.Z. Wang, Nano Lett. 20, 3769–3777 (2020)

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 62201619, 21902186), and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2020zzts052).

Author information

Authors and Affiliations

Authors

Contributions

LQ: Conceptualization, Methodology, data curation, Writing—original draft. BZ: Conceptualization, Methodology. TQ: Conceptualization, Supervision. CL: Conceptualization, Data curation. CT: Conceptualization, Methodology. SH: Conceptualization, Methodology. LD: Supervision, Funding acquisition, Writing—review and editing.

Corresponding author

Correspondence to Lianwen Deng.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Zeng, B., Qin, T. et al. MOF-derived Co/ZnO/C nanocomposites with excellent microwave absorption properties. J Mater Sci: Mater Electron 34, 1478 (2023). https://doi.org/10.1007/s10854-023-10858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10858-0

Navigation