Skip to main content
Log in

Conductivity and optical bandgap parameters variations of methyl red-doped 4-pentyl-4′-cyanobiphenyl nematic liquid crystal: norland optical adhesive 65 photopolymer composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effect of methyl red (MR) concentration variation on conductivity and optical bandgap parameters of 4-pentyl-4′-cyanobiphenyl (5CB) nematic liquid crystal and norland optical adhesive 65 (NOA65) photopolymer (5CB:NOA65) composite was investigated. As a result of the experimental studies, wavelength-dependent absorbance, frequency-dependent dielectric constants (ε′ and ε″), and alternating current (ac) conductivity (σac) graphs of the samples were obtained. Also, dielectric anisotropy (Δε′), direct current (dc) conductivity (σdc), and optical bandgap (Eg) parameters were determined. It was observed that ε′, ε″, and σac increased with increasing MR concentration at low frequency region. On the other hand, it was concluded that Δε′ and Eg decreased with increasing MR concentration. It has been seen that the results are compatible with each other and it is thought that composites may be useful for liquid crystal-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data related to this article have been provided in this article.

References

  1. D. Varshney, J. Anu, V. Prakash, K. Pratap Singh, G. Yadav, Singh, Probing the impact of bismuth-titanate based nanocomposite on the dielectric and electro-optical features of a nematic liquid crystal material. J. Mol. Liq. 347, 118389 (2022)

    CAS  Google Scholar 

  2. S. Mani, S. Patwardhan, S. Hadkar, K. Mishra, P. Sarawade, Effect of polymer concentration on optical and electrical properties of liquid crystals for photonic applications. Mater. Today: Proc. 62, 7035–7039 (2022)

    CAS  Google Scholar 

  3. J.-G. An, S. Hina, Y. Yang, M. Xue, Y. Liu, Characterization of liquid crystals: a literature review. Rev. Adv. Mater. Sci. 44, 398–406 (2016)

    Google Scholar 

  4. Ş. Özğan, H. Eskalen, Y. Tapkıranlı, The electrical and optical behavior of graphene oxide doped nematic liquid crystal. J. Mater. Sci.: Mater. Electron. 33, 5720–5729 (2022)

    Google Scholar 

  5. G. Jamwal, J. Prakash, A. Chandran, J. Gangwar, A.K. Srivastava, A.M. Biradar, Effect of nickel oxide nanoparticles on dielectric and optical properties of nematic liquid crystal. AIP Conf. Proc. 1675, 030065 (2015)

    Google Scholar 

  6. G. Yadav, M. Kumar, A. Srivastava, R. Manohar, SiO2 nanoparticles doped nematic liquid crystal system: an experimental investigation on optical and dielectric properties. Chin. J. Phys. 57, 82–89 (2019)

    CAS  Google Scholar 

  7. A. Roy, B.P. Singh, G. Yadav, H. Khan, S. Kumar, A. Srivastava, R. Manohar, Effect of gold nanoparticles on intrinsic material parameters and luminescent characteristics of nematic liquid crystals. J. Mol. Liq. 295, 111872 (2019)

    CAS  Google Scholar 

  8. A. Kumar, D. Varshney, J. Prakash, Role of ionic contribution in dielectric behaviour of a nematic liquid crystal with variable cell thickness. J. Mol. Liq. 303, 112520 (2020)

    CAS  Google Scholar 

  9. G. Yadav, K. Agrahari, R. Manohar, Multiwall carbon nanotube-nematic liquid crystal composite system: preparation and characterization. J. Dispers Sci. Technol. 42(5), 707–714 (2021)

    CAS  Google Scholar 

  10. L. Ye, C. Hou, C. Lv, C. Zhao, Z. Yin, Y. Cui, Y. Lu, Tailoring of random lasing characteristics in dye-doped nematic liquid crystals. Appl. Phys. B 115, 303–309 (2014)

    CAS  Google Scholar 

  11. S. Pandey, S.K. Gupta, D.P. Singh, T. Vimal, P.K. Tripathi, A. Srivastava, R. Manohar, Effects of polymer doping on dielectric and electro-optical parameters of nematic liquid crystal. Polym. Eng. Sci. 55(2), 414–420 (2015)

    CAS  Google Scholar 

  12. Y. Kim, D. Jung, S. Jeong, K. Kim, W. Choi, Y. Seo, Optical properties and optimized conditions for polymer dispersed liquid crystal containing UV curable polymer and nematic liquid crystal. Curr. Appl. Phys. 15(3), 292–297 (2015)

    Google Scholar 

  13. H. Eskalen, Ş. Özğan, M. Okumuş, S. Kerl, Thermal and electro-optical properties of graphene oxide/dye-doped nematic liquid crystal. Braz J. Phys. 49, 341–347 (2019)

    CAS  Google Scholar 

  14. M. Chemingui, U.B. Singh, N. Yadav, R.S. Dabrowski, R. Dhar, Effect of iron oxide (γ-Fe2O3) nanoparticles on the morphological, electro-optical and dielectric properties of a nematic liquid crystalline material. J. Mol. Liq. 319, 114299 (2020)

    CAS  Google Scholar 

  15. K.P. Praseetha, E. Shiju, K. Chandrasekharan, S. Varghese, Intense nonlinear optical properties of ZnS quantum dot doped nematic liquid crystal compounds. J. Mol. Liq. 328, 115347 (2021)

    Google Scholar 

  16. D. Coates, Polymer-dispersed liquid crystals. J. Mater. Chem. 5, 2063–2072 (1995)

    CAS  Google Scholar 

  17. P.S. Drazic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995)

    Google Scholar 

  18. P. Yu, J. Liu, Y. Zhao, Z. He, C. Ma, H. Zhang, Z. Miao, W. Shen, Ionic liquid-doped liquid crystal/polymer composite for multifunctional smart windows. Dyes Pigm. 208, 110817 (2022)

    CAS  Google Scholar 

  19. Y.-H. Fan, Y.-H. Lin, H. Ren, S. Gauza, S.-T. Wu, Fast-response and scattering-free polymer network liquid crystals for infrared light modulators. Appl. Phys. Lett. 84(8), 1233–1235 (2004)

    CAS  Google Scholar 

  20. D. Jayoti, P. Malik, A. Singh, Analysis of morphological behaviour and electro-optical properties of silica nanoparticles doped polymer dispersed liquid crystal composites. J. Mol. Liq. 225, 456–461 (2017)

    CAS  Google Scholar 

  21. R.R. Deshmukh, A.K. Jain, The complete morphological, electro-optical and dielectric study of dichroic dye-doped polymer-dispersed liquid crystal. Liq Cryst. 41, 960–975 (2014)

    CAS  Google Scholar 

  22. X. Zhang, R. Han, H. Li, X. Zhao, H. Cao, Y. Chen, Z. Yang, D. Wang, W. He, Preparation of flexible liquid crystal films with broadband reflection based on PD&SLC. Materials. 15, 8896 (2022)

    CAS  Google Scholar 

  23. K.J. Anuja, R.R. Deshmukh, An overview of HPDLC films and their applications. Liq Cryst. 49(5), 589–604 (2022)

    CAS  Google Scholar 

  24. C. Li, M. Chen, L. Zhang, W. Shen, X. Liang, X. Wang, H. Yang, An electrically light-transmittance-switchable film with a low driving voltage based on liquid crystal/polymer composites. Liq Cryst. 47(1), 106–113 (2020)

    Google Scholar 

  25. M.H. Saeed, S. Zhang, M. Yu, L. Zhou, J. Huang, Q. Feng, H. Lin, X. Wang, J. Hu, L. Zhang, H. Yang, Effects of oxygen heterocyclic acrylate monomers on the morphologies and electro-optical properties of polymer dispersed liquid crystal composite films. Optik. 229, 166254 (2021)

    CAS  Google Scholar 

  26. M. Zhang, X. Li, Z. Long, R. Guo, W. Gao, H. Ma, Y. Sun, Effect of different monomers on the electro-optical properties of reverse-mode polymer stabilized liquid crystal. J. Mol. Liq. 363, 119895 (2022)

    CAS  Google Scholar 

  27. K.-J. Yang, D.-Y. Yoon, Electro-optical characteristics of dye-doped polymer dispersed liquid crystals. J. Ind. Eng. Chem. 17, 543–548 (2011)

    CAS  Google Scholar 

  28. P. Kumar, S.-W. Neeraj, S.H. Kang, K.K. Lee, Raina, Analysis of dichroic dye doped polymer-dispersed liquid crystal materials for display devices. Thin Solid Films. 520, 457–463 (2011)

    CAS  Google Scholar 

  29. F. Ahmad, M. Jamil, Y.J. Jeon, L.J. Woo, J.E. Jung, J.E. Jang, Investigation of nonionic diazo dye-doped polymer dispersed liquid crystal film. Bull. Mater. Sci. 35(2), 221–231 (2012)

    CAS  Google Scholar 

  30. P. Kumar, V. Sharma, K.K. Raina, Studies on inter-dependency of electrooptic characteristics of orange azo and blue anthraquinone dichroic dye doped polymer dispersed liquid crystals. J. Mol. Liq. 251, 407–416 (2018)

    CAS  Google Scholar 

  31. A.K. Singh, P. Malik, Textural, electro-optical, dielectric and fluorescence studies of citrate buffer stabilized gold nanoparticles doped in polymer-dispersed liquid crystals composites. Liq Cryst. 49(6), 864–874 (2022)

    CAS  Google Scholar 

  32. X. Meng, J. Li, X. Liu, J. Zhao, G. Li, D. Li, Z. He, Effect of the magnetic nanoparticle concentration on the electro-optical properties of the polymer-dispersed liquid crystals. Liq Cryst. 49(12), 1612–1622 (2022)

    CAS  Google Scholar 

  33. X. Wang, W. Hu, G. Chen, H. Chen, R. Huang, Y. Ren, J. Xu, J. Hu, L. Zhang, M. Yu, TiO2 doped polymer dispersed and stabilised liquid crystal smart film with high contrast ratio, low driving voltage and short response time. Liq Cryst. 49(12), 1623–1632 (2022)

    CAS  Google Scholar 

  34. M.M. Mhatre, A.K. Jain, R.R. Deshmukh, Improved electro-optical and dielectric properties of polymer dispersed liquid crystal doped with disperse dye red 1 and carbon nanoparticles. Liq Cryst. (2023). https://doi.org/10.1080/02678292.2023.2190171

    Article  Google Scholar 

  35. A.K. Jain, R.R. Deshmukh, Effects of dye doping on electro-optical, thermo-electro optical and dielectric properties of polymer dispersed liquid crystal films. J. Phys. Chem. Solids. 160, 110363 (2022)

    Google Scholar 

  36. V. Sharma, P. Kumar, A. Sharma, K.K. Chinky, Raina, Droplet configuration control with orange azo dichroic dye in polymer dispersed liquid crystal for advanced electro-optic characteristics. J. Mol. Liq. 233, 122–130 (2017)

    CAS  Google Scholar 

  37. P. Malik, K.K. Raina, Dichroic dye-dependent studies in guest-host polymer dispersed liquid crystal films. Phys. B: Condens. Matter. 405(1), 161–166 (2010)

    CAS  Google Scholar 

  38. H. Sun, Z. Xie, C. Ju, X. Hu, D. Yuan, W. Zhao, L. Shui, G. Zhou, Dye-doped electrically smart windows based on polymer-stabilized liquid crystal. Polymers. 11, 694 (2019)

    CAS  Google Scholar 

  39. M.M. Mhatre, A.K. Jain, R.R. Deshmukh, Enhancing morphological, electro-optical and dielectric properties of polymer-dispersed liquid crystal by doping of disperse Orange 25 dye in LC E7. Liq. Cryst. 49(6), 790–803 (2022)

    CAS  Google Scholar 

  40. Y. Liu, J. Zheng, Z. Jiang, Q. Zhu, Q. Chen, S. Zhuang, Optical and dielectric analysis of ZnO nanorods doped polymer dispersed liquid crystal and ethanol gas sensing investigation. Liq. Cryst. 47(14–15), 2247–2256 (2020)

    CAS  Google Scholar 

  41. R. Kumar, K.K. Raina, Electrically modulated fluorescence in optically active polymer stabilised cholesteric liquid crystal shutter. Liq. Cryst. 41(2), 228–233 (2014)

    CAS  Google Scholar 

  42. R. Manda, S. Pagidi, M. Kim, C.H. Park, H.S. Yoo, K. Sandeep, Y.J. Lim, S.H. Lee, Effect of monomer concentration and functionality on electro-optical properties of polymer stabilised optically isotropic liquid crystals. Liq. Cryst. 45(5), 736–745 (2018)

    CAS  Google Scholar 

  43. X. Meng, J. Li, Y. Lin, X. Liu, G. Li, J. Zhao, Y. Miao, W. Li, W. Ye, D. Li, Z. He, Electro-optical response of polymer-dispersed liquid crystals doped with γ-Fe2O3 nanoparticles. Liq. Cryst. 49(6), 855–863 (2022)

    CAS  Google Scholar 

  44. X. Meng, J. Li, Y. Lin, X. Liu, G. Li, J. Zhao, D. Li, Z. He, Optimization approach for the dilute magnetic polymer-dispersed liquid crystal. Opt. Mater. 131, 112670 (2022)

    CAS  Google Scholar 

  45. A.V. Ambika, N. Navya, N. Vinutha, B.L. Suresha, Dielectric, optical and absorption studies of f-MWCNTs dispersed nematic liquid crystal. Mol. Cryst. Liq. Cryst. (2022). https://doi.org/10.1080/15421406.2022.2153544

    Article  Google Scholar 

  46. P.K. Singh, P. Dubey, R. Dhar, R. Dabrowski, Functionalized and non-functionalized multi walled carbon nanotubes in the anisotropic media of liquid crystalline material. J. Mol. Liq. 369, 120889 (2023)

    Google Scholar 

  47. Ö. Tüzün Özmen, K. Goksen, A. Demir, M. Durmus, O. Köysal, Investigation of photoinduced change of dielectric and electrical properties of indium (III) phthalocyanine and fullerene doped nematic liquid crystal. Synth. Met. 162(24), 2188–2192 (2012)

    Google Scholar 

  48. R. Manohar, K.K. Pandey, A.K. Srivastava, A.K. Misra, S.P. Yadav, Sign inversion of dielectric anisotropy in nematic liquid crystal by dye doping. J. Phys. Chem. Solids. 71(9), 1311–1315 (2010)

    CAS  Google Scholar 

  49. M. Rahman, C.-W. Hsieh, C.-T. Wang, B.-R. Jian, W. Lee, Dielectric relaxation dynamics in liquid crystal–dye composites. Dyes Pigm. 84(1), 128–133 (2010)

    CAS  Google Scholar 

  50. O. Köysal, M. Okutan, M. Gökçen, Investigation of dielectric properties and diffraction efficiency enhancements caused by photothermal effect in DR9 dye-doped nematic liquid crystal. Opt. Commun. 284(20), 4924–4928 (2011)

    Google Scholar 

  51. A. Rani, S. Chakraborty, A. Sinha, Effect of CdSe/ZnS quantum dots doping on the ion transport behavior in nematic liquid crystal. J. Mol. Liq. 342, 117327 (2021)

    CAS  Google Scholar 

  52. D.K. Gaur, A. Rastogi, H. Trivedi, A.S. Parmar, R. Manohar, S. Singh, Investigation of dielectric and optical properties of pure and diamond nanoparticles dispersed nematic liquid-crystal PCH5. Liq. Cryst. 48(9), 1257–1267 (2021)

    CAS  Google Scholar 

  53. Y.-C. Hsiao, W. Lee, Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect. Opt. Express. 21(20), 23927–23933 (2013)

    CAS  Google Scholar 

  54. F.P. Pandey, A. Rastogi, R. Manohar, S. Singh, Dielectric and electro-optical properties of zinc ferrite nanoparticles dispersed nematic liquid crystal 4′-Heptyl-4 biphenylcarbonnitrile. Liq. Cryst. 47(7), 1025–1040 (2020)

    CAS  Google Scholar 

  55. A. Sharma, P. Malik, R. Dhar, P. Kumar, Improvement in electro-optical and dielectric characteristics of ZnO nanoparticles dispersed in a nematic liquid crystal mixture. Bull. Mater. Sci. 42, 215 (2019)

    Google Scholar 

  56. M. Yıldırım, O. Köysal, G. Önsal, E. Gümüş, Effect of iron phthalocyanine (FePc) concentration on electrical and dielectric properties of the nematic liquid crystal composites. J. Mol. Liq. 223, 868–872 (2016)

    Google Scholar 

  57. N. Yilmaz Canli, H. Ocak, M. Okutan, G. Karanlık, B. Bilgin, Eran, Comparative dielectric parameters and conductivity mechanisms of pyridine-based rod-like liquid crystals. Phase Transit. 93(8), 784–792 (2020)

    CAS  Google Scholar 

  58. A.K. Misra, P.K. Tripathi, R. Manohar, Fluorescence, UV absorbance and dielectric studies of fluorescent dye doped ferroelectric liquid crystal. J. Non-Cryst Solids. 412, 1–4 (2015)

    CAS  Google Scholar 

  59. Y.H. Elbashar, S.M. Hussien, J. Khaliel, M.A. Mohamed, A.E. Omran, R.A. Ibrahem, W.A. Rashidy, A.S. AbdelRahaman, H.H. Hassan, Infrared spectroscopic analysis of cadmium doped sodium zinc phosphate glass matrix. Nonlinear Opt. Quantum Opt. 54, 105–114 (2021)

    CAS  Google Scholar 

  60. Y.H. Elbashar, W.A. Rashidy, J. Khaliel, S.M. Hussien, A.E. Omran, R.A. Ibrahem, M.A. Mohamed, A.S. Abdel-Rahaman, H.H. Hassan, Molecular spectroscopic analysis of sodium phosphate zinc copper glass matrix doped magnesium. Nonlinear Opt. Quantum Opt. 54, 205–215 (2021)

    CAS  Google Scholar 

  61. Y.H. Elbashar, R.A. Ibrahem, J. Khalie, S.M. Hussien, A.E. Omran, W.A. Rashidy, M.A. Mohamed, A.S. Abdel-Rahaman, H.H. Hassan, Infrared spectroscopy analysis of vanadium oxide doped sodium zinc phosphate glass matrix. Nonlinear Opt. Quantum Opt. 54, 231–239 (2021)

    CAS  Google Scholar 

  62. G. Pathak, G. Hedge, V. Prasad, Octadecylamine-capped CdSe/ZnS quantum dot dispersed cholesteric liquid crystal for potential display application: investigation on photoluminescence and UV absorbance. Liq Cryst. 48(4), 579–587 (2021)

    CAS  Google Scholar 

  63. B.P. Singh, C.-Y. Huang, D.P. Singh, P. Palani, B. Duponchel, M. Sah, R. Manohar, K.K. Pandey, The scientific duo of TiO2 nanoparticles and nematic liquid crystal E204: increased absorbance, photoluminescence quenching and improving response time for electro-optical devices. J. Mol. Liq. 325, 115130 (2021)

    CAS  Google Scholar 

  64. G. Kocakülah, O. Köysal, A. Kahyaoğlu, Electro-optical performance investigation of cholesteric liquid crystal containing azo dye: light shutter device application. J. Electron. Mater. 50(2), 497–510 (2021)

    Google Scholar 

  65. R. Verma, M. Mishra, R. Dhar, R. Dabrowski, Enhancement of electrical conductivity, director relaxation frequency and slope of electro-optical characteristics in the composites of single-walled carbon nanotubes and a strongly polar nematic liquid crystal. Liq. Cryst. 44, 544–556 (2016)

    Google Scholar 

  66. Y.H. Elbashar, A.E. Omran, J.A. Khaliel, A.S. Abdel-Rahaman, H.H. Hassan, Ultraviolet transmitting glass matrix for low power laser lens. Nonlinear Opt. Quantum Opt. 49, 247–265 (2018)

    CAS  Google Scholar 

  67. Y.H. Elbashar, S.M. Hussien, J.A. Khaliel, D.I. Moubarak, A.S. Abdel-Rahaman, H.H. Hassan, Optical spectroscopic analysis of sodium zinc phosphate glass doped cadmium oxide used for laser window protection. Phys. AUC 28, 57–72 (2018)

    Google Scholar 

  68. R. Verma, M. Mishra, R. Dhar, R. Dabrowski, Single walled carbon nanotubes persuaded optimization of the display parameters of a room temperature liquid crystal 4-pentyl-4′cyanobiphenyl. J. Mol. Liq. 221, 190–196 (2016)

    CAS  Google Scholar 

  69. G. Pathak, S. Pandey, R. Katiyar, A. Srivastava, R. Dabrowski, K. Garbat, R. Manohar, Analysis of photoluminescence, UV absorbance, optical band gap and threshold voltage of TiO2 nanoparticles dispersed in high birefringence nematic liquid crystal towards its application in display and photovoltaic devices. J. Lumin. 192, 33–39 (2017)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

GK and OK performed all the experimental work, collected and analyzed the data, wrote the first draft of the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Gülsüm Kocakülah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocakülah, G., Köysal, O. Conductivity and optical bandgap parameters variations of methyl red-doped 4-pentyl-4′-cyanobiphenyl nematic liquid crystal: norland optical adhesive 65 photopolymer composites. J Mater Sci: Mater Electron 34, 1498 (2023). https://doi.org/10.1007/s10854-023-10857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10857-1

Navigation