Skip to main content
Log in

Role of antisolvent-based two-step fabrication process in retention of structural stability of organic–inorganic perovskites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The organic–inorganic metal halide perovskites (OIMHPs) have been widely explored in recent years due to their competent performance in energy conversion and storage applications. We compare the time dynamics of structural, morphological, and optoelectronic attributes of Methylammonium lead Iodide (MAPbI3) thin films synthesized by a two-step solution processing route in two different ways, viz. without and with antisolvent vapor exposure. The time-dependent GIXD profiles reveal the better structural preservation of the antisolvent-exposed synthesized sample over 25 days, manifested by only slight emergence of PbI2 diffraction peak at 12.71°, unlike the other film devoid of antisolvent exposure where a strong PbI2 peak appears after 25 days, indicating the structural decomposition of MAPbI3. The structural degradation of the films devoid of antisolvent treatment is also corroborated by the appearance of an absorption onset at ~ 2.3 eV in the Tauc plot, attributed to the PbI2 bandgap. On the other hand, only a slight spectral shift, from ~ 1.55 eV (0 days) to ~ 1.67 eV (25 days), occurs in the assessed optical bandgap in the antisolvent-exposed films. A two-step mechanism, responsible for the structural phase retention in the antisolvent-exposed films, is proposed based on preferential intercalation and availability of more reaction sites that propel the exhaustive conversion of precursors leading to a structurally stable perovskite phase. This investigation may help address the issues of structural decomposition, which have been impeding the widespread application of OIMHPs into photovoltaics and other light energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, Seok Nat. Mater. 13, 897 (2014)

    Article  CAS  Google Scholar 

  2. T.M. Brenner, D. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev Mater 1, 15007 (2016)

    Article  CAS  Google Scholar 

  3. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  4. J.S. Manser, J.A. Christians, P.V. Kamat, Chem. Rev. 116, 21, 12956 (2016)

    Article  CAS  Google Scholar 

  5. L. Chouhan, S. Ghimire, C. Subrahmanyam, T. Miyasaka, V. Biju, Chem. Soc. Rev. 49, 2869 (2020)

    Article  CAS  Google Scholar 

  6. Y. Fu, H. Zhu, J. Chen, M.P. Hautzinger, X.-Y. Zhu, S. Jin, Nat. Rev. Mater. 4, 169 (2019)

    Article  CAS  Google Scholar 

  7. A. Sahoo, T. Paul, S. Maiti, R. Banerjee, Nanotechnology. 33(19), 195703 (2022)

    Article  Google Scholar 

  8. N.H. Makani, A. Sahoo, P. Pal, T. Paul, L.S. Tanwar, M. Singh, A. Ghosh, R. Banerjee, Phys. Rev. Materials. 6(11), 115002 (2022)

    Article  CAS  Google Scholar 

  9. M. Singh, T. Paul, P. Pal, A. Sahoo, L.S. Tanwar, N.H. Makani, A. Ghosh, R. Banerjee, J. Phy Chem. C 126, 51, 21810 (2022)

    Article  CAS  Google Scholar 

  10. K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Gratzel, W. Tress, Nat. Energy. 3, 61 (2018)

    Article  CAS  Google Scholar 

  11. D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech et al., Science. 351, 151 (2016)

    Article  CAS  Google Scholar 

  12. H.-P. Wang, S.Y. Li, X.Y. Liu, Z.F. Shi, X.S. Fang, J.-H. He, Adv. Mater. 33, 2003309 (2021)

    Article  CAS  Google Scholar 

  13. A. Siddik, P.K. Haldar, T. Paul, U. Das, A. Barman, A. Roy, P.K. Sarkar, Nanoscale. 13(19), 8864 (2021)

    Article  CAS  Google Scholar 

  14. T. Paul, P.K. Sarkar, S. Maiti, K.K. Chattopadhyay, ACS Appl. Electron. Mater. 2(11), 3667 (2020)

    Article  CAS  Google Scholar 

  15. S. Mondal, S. Maiti, T. Paul, A. Sahoo, S. Bhattacharjee, N.S. Das, K.K. Chattopadhyay, Appl. Mater. Today. 26, 101385 (2022)

    Article  Google Scholar 

  16. A. Sahoo, T. Paul, N.H. Makani, S. Maiti, R. Banerjee, Sustain Energy Fuels 6(19), 4484 (2022)

    Article  CAS  Google Scholar 

  17. A. Maity, S. Mitra, C. Das, S. Siraj, A.K. Raychaudhuri, B. Ghosh, Mater. Res. Bull. 136, 111142 (2021)

    Article  CAS  Google Scholar 

  18. H. Kim, L. Zhao, J.S. Price, A.J. Grede, K. Roh, A.N. Brigeman, M. Lopez, B.P. Rand, N.C. Giebink, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  19. M. Singh, J. Nama, T. Paul, N.H. Makani, A. Sahoo, S. Sharma, R. Banerjee, ACS Appl. Energy Mater. 6(6), 3566 (2023)

    Article  CAS  Google Scholar 

  20. N.H. Makani, M. Singh, T. Paul, A. Sahoo, J. Nama, S. Sharma, R. Banerjee, J. Electroanal. Chem. 920, 116583 (2022)

    Article  CAS  Google Scholar 

  21. W. Xiang, S. Liu, W. Tress, Energy Environ. Sci. 14, 2090 (2021)

    Article  CAS  Google Scholar 

  22. Y. Zhao, K. Zhu, Chem. Soc. Rev. 45, 655 (2016)

    Article  CAS  Google Scholar 

  23. B. Wang, N. Novendra, A. Navrotsky, J. Am. Chem. Soc. 141, 14501 (2019)

    Article  CAS  Google Scholar 

  24. J.S. Bechtel, A. Van der Ven, Phys. Rev. Mater. 2, 025401 (2018)

    Article  CAS  Google Scholar 

  25. C. Ran, J. Xu, W. Gao, C. Huang, S. Dou, Chem. Soc. Rev. 47, 4581 (2018)

    Article  CAS  Google Scholar 

  26. R.A. Belisle, K.A. Bush, L. Bertoluzzi, A.G. Parker, M.F. Toney, M.D. McGehee, ACS Energy Lett. 3, 2694 (2018)

    Article  CAS  Google Scholar 

  27. M.I. Saidaminov, J. Kim, A. Jain, R.Q.-. Bermudez, H. Tan, G. Long, F. Tan, A. Johnston, Y. Zhao, O. Voznyy, E.H. Sargent, Nat. Energy. 3, 648 (2018)

    Article  CAS  Google Scholar 

  28. S. Ghosh, S. Mishra, T. Singh, Adv. Mater. Interfaces. 7, 2000950 (2020)

    Article  CAS  Google Scholar 

  29. G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Adv. Funct. Mater. 24, 151 (2014)

    Article  CAS  Google Scholar 

  30. K.P. Ong, T.W. Goh, Q. Xu, A. Huan, J. Phys. Chem. A 119, 11033 (2015)

    Article  CAS  Google Scholar 

  31. Y. Lu, Z. Si, H. Liu, Y. Ge, J. Hu, Z. Zhang, X. Mu, K. Selvakumar, M. Sui, Chem. Eur. J. 27, 3729 (2021)

    Article  CAS  Google Scholar 

  32. D. Liu, T.L. Kelly, Nat. Photon. 8, 133 (2014)

    Article  CAS  Google Scholar 

  33. D. Ghosh, A.R. Smith, A.B. Walker, M.S. Islam, Chem. Mater. 30(15), 5194 (2018)

    Article  CAS  Google Scholar 

  34. M. Li, X. Yan, Z. Kang, X. Liao, Y. Li, X. Zheng, P. Lin, J. Meng, Y. Zhang, ACS Appl. Mater. Interfaces. 9, 7224 (2017)

    Article  CAS  Google Scholar 

  35. A.V. Dighe, P.K.R. Podupu, P. Coliaie, M.R. Singh, Cryst. Growth Des. 22, 3119 (2022)

    Article  CAS  Google Scholar 

  36. T. Zhang, M. Yang, Y. Zhao, K. Zhu, Nano Lett. 15, 3959 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the MoE-STARS, Govt. of India under the project MoE-STARS/STARS-1/231 is gratefully acknowledged. We would also like to thank the Central Instrumentation Facility at IIT Gandhinagar for facilitating several measurements.

Funding

This study was supported by MoE-STARS, Govt. of India, (MoE-STARS/STARS-1/231).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experimental design, data analysis, and manuscript organization. MS designed the experimental plan, performed research, analyzed data, and wrote the paper. TP, NHM, and D performed experiments and helped with data curation and analysis. RB supervised the project, validated the data, and reviewed and edited the manuscript at different stages.

Corresponding author

Correspondence to Rupak Banerjee.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Paul, T., Makani, N.H. et al. Role of antisolvent-based two-step fabrication process in retention of structural stability of organic–inorganic perovskites. J Mater Sci: Mater Electron 34, 1441 (2023). https://doi.org/10.1007/s10854-023-10856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10856-2

Navigation