Skip to main content
Log in

Fabrication of integrated all-solid titanium dioxide and silver/silver chloride electrodes for facile pH electrochemical detection via extended-gate field effect transistor transducing method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An integrated all-solid electrode (IASE) consisting of a solid-state silver/silver chloride (Ag/AgCl) reference electrode (RE) and titanium dioxide (TiO2) sensing electrode (SE) on a single indium tin oxide (ITO) substrate was successfully fabricated for an extended-gate field effect transistor (EGFET) pH sensor. Two different sizes of ITO substrate (2 cm × 2 cm and 1 cm × 2 cm) were used to fabricate the TiO2 SE using the sol–gel spin-coating method with an area of 0.75 and 0.35 cm2, respectively. In contrast, the RE part was fabricated using thermal evaporation. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy were used to investigate the composition of TiO2 and Ag/AgCl thin film. The IASE performance was then evaluated in terms of sensor sensitivity and linearity by applying it to an EGFET pH sensor setup and compared with commercialized Ag/AgCl RE. It was found that the sensor sensitivity and linearity for IASE are comparable, if not better than the EGFET setup using the commercialized RE. The sensitivity for IASE-EGFET was 67.8 mV/pH for the size of 2 cm × 2 cm ITO substrate, and that of 1 cm × 2 cm was 52.8 mV/pH, while the sensitivity setup with commercialized RE was 54.3 mV/pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Y. He et al., Intelligent pH-sensing film based on polyvinyl alcohol/cellulose nanocrystal with purple cabbage anthocyanins for visually monitoring shrimp freshness. Int. J. Biol. Macromol. 218, 900–908 (2022). https://doi.org/10.1016/j.ijbiomac.2022.07.194

    Article  CAS  Google Scholar 

  2. Z. Güngör, H. Ozay, Ultra-fast pH determination with a new colorimetric pH-sensing hydrogel for biomedical and environmental applications. React. Funct. Polym. (2022). https://doi.org/10.1016/j.reactfunctpolym.2022.105398

    Article  Google Scholar 

  3. L. Gao, P. Liu, L. Liu, S. Li, Y. Zhao, J. Xie, H. Xu, κ-Carrageenan-based pH-sensing films incorporated with anthocyanins or/and betacyanins extracted from purple sweet potatoes and peels of dragon fruits. Process Biochem. 121, 463–480 (2022). https://doi.org/10.1016/j.procbio.2022.07.019

    Article  CAS  Google Scholar 

  4. J. Chalitangkoon, P. Monvisade, Synthesis of chitosan-based polymeric dyes as colorimetric pH-sensing materials: potential for food and biomedical applications. Carbohydr. Polym. 260, 117836 (2021). https://doi.org/10.1016/j.carbpol.2021.117836

    Article  CAS  Google Scholar 

  5. C. Nicolò, M. Parmeggiani, S. Villata, D. Baruffaldi, S.L. Marasso, G. Canavese, M. Cocuzza, C.F. Pirri, F. Frascella, A programmable culture platform for hydrostatic stimulation and in situ pH sensing of lung cancer cells with organic electrochemical transistors. Micro Nano Eng. (2022). https://doi.org/10.1016/j.mne.2022.100147

    Article  Google Scholar 

  6. M. Fathi, A. Babaei, H. Rostami, Development and characterization of locust bean gum-viola anthocyanin-graphene oxide ternary nanocomposite as an efficient pH indicator for food packaging application. Food Packag. Shelf Life (2022). https://doi.org/10.1016/j.fpsl.2022.100934

    Article  Google Scholar 

  7. L. Jovanska, C.H. Chiu, Y.C. Yeh, W.D. Chiang, C.C. Hsieh, R. Wang, Development of a PCL-PEO double network colorimetric pH sensor using electrospun fibers containing Hibiscus rosa sinensis extract and silver nanoparticles for food monitoring. Food Chem. 368, 130813 (2022). https://doi.org/10.1016/j.foodchem.2021.130813

    Article  CAS  Google Scholar 

  8. Y. Zou, Y. Sun, W. Shi, B. Wan, H. Zhang, Dual-functional shikonin-loaded quaternized chitosan/polycaprolactone nanofibrous film with pH-sensing for active and intelligent food packaging. Food Chem. (2023). https://doi.org/10.1016/j.foodchem.2022.133962

    Article  Google Scholar 

  9. M.C. Alonso, J.L. García Calvo, A. Hidalgo, L. Fernández, Luco, Development and application of low-pH concretes for structural purposes in geological repository systems. Geol. Repos. Syst. Safe Dispos. Spent Nucl. Fuels Radioact. Waste (2010). https://doi.org/10.1533/9781845699789.3.286

    Article  Google Scholar 

  10. S. Fierro, R. Seishima, O. Nagano, H. Saya, Y. Einaga, In vivo pH monitoring using boron doped diamond microelectrode and silver needles: application to stomach disorder diagnosis. Sci. Rep. 3, 1–4 (2013). https://doi.org/10.1038/srep03257

    Article  Google Scholar 

  11. A. Sardarinejad, D. Maurya, K. Alameh, The pH sensing properties of RF sputtered RuO2 thin-film prepared using different Ar/O2 flow ratio. Materials (Basel) 8, 3352–3363 (2015). https://doi.org/10.3390/ma8063352

    Article  CAS  Google Scholar 

  12. S.A. Pullano, M. Greco, S.A. Fiorillo, I. Mahbub, N.T. Tasneem, S. Shamsir, S.K. Islam, Design and fabrication of an EGFET based chemical sensor using transistor association technique, IEEE Medical Measurement Application MeMeA Conference Proeedings. 1–5 (2020) https://doi.org/10.1109/MeMeA49120.2020.9137280

  13. H.J.N.P.D. Mello, M. Mulato, Well-established materials in microelectronic devices systems for differential-mode extended-gate field effect transistor chemical sensors. Microelectron. Eng. 160, 73–80 (2016). https://doi.org/10.1016/j.mee.2016.03.036

    Article  CAS  Google Scholar 

  14. P.C. Yao, J.L. Chiang, M.C. Lee, Application of sol–gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor. Solid State Sci. 28, 47–54 (2014). https://doi.org/10.1016/j.solidstatesciences.2013.12.011

    Article  CAS  Google Scholar 

  15. M. Al Hadi Zulkefle, S.H. Herman, R.A. Rahman, K.A. Yusof, A.B. Rosli, W.F. Hanim, Abdullah, Z. Zulkifli, Evaluation on the egfet ph sensing performance of sol–gel spin coated titanium dioxide thin film. J. Teknol. 83, 119–125 (2021). https://doi.org/10.11113/jurnalteknologi.v83.16313

    Article  Google Scholar 

  16. H.A. Khizir, T.A.H. Abbas, Hydrothermal synthesis of TiO2 nanorods as sensing membrane for extended-gate field-effect transistor (EGFET) pH sensing applications. Sens. Actuators Phys. 333, 113231 (2022). https://doi.org/10.1016/J.SNA.2021.113231

    Article  CAS  Google Scholar 

  17. A.O. Özdemir, B. Caglar, O. Çubuk, F. Coldur, M. Kuzucu, E.K. Guner, B. Doğan, S. Caglar, K.V. Özdokur, Facile synthesis of TiO2-coated cotton fabric and its versatile applications in photocatalysis, pH sensor and antibacterial activities. Mater. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2022.126342

    Article  Google Scholar 

  18. J. Zhou, X. Li, T. Pu, Y. He, X. Wang, Y. Bu, L. Li, J.P. Ao, Surface sensibility and stability of AlGaN/GaN ion-sensitive field-effect transistors with high Al-content AlGaN barrier layer. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.151190

    Article  Google Scholar 

  19. S. Sinha, T. Pal, D. Kumar, R. Sharma, D. Kharbanda, P.K. Khanna, R. Mukhiya, Design, fabrication and characterization of TiN sensing film-based ISFET pH sensor. Mater. Lett. 304, 130556 (2021). https://doi.org/10.1016/j.matlet.2021.130556

    Article  CAS  Google Scholar 

  20. M. Joly, L. Mazenq, M. Marlet, P. Temple-Boyer, C. Durieu, J. Launay, All-solid-state multimodal probe based on ISFET electrochemical microsensors for in-situ soil nutrients monitoring in agriculture. Conf. Solid State Sens. Actuators Microsyst. 1, 222–225 (2017). https://doi.org/10.1109/TRANSDUCERS.2017.7994028

    Article  Google Scholar 

  21. D.S. Khwairakpam, P.D. Pukhrambam, Sensitivity optimization of a double-gated ISFET pH-sensor with HfO2/SiO2 gate dielectric stack. Microelectron. J. 118, 105282 (2021). https://doi.org/10.1016/j.mejo.2021.105282

    Article  CAS  Google Scholar 

  22. H.A. Khizir, T.A.H. Abbas, Hydrothermal synthesis of TiO2 nanorods as sensing membrane for extended-gate field-effect transistor (EGFET) pH sensing applications. Sens. Actuators Phys. (2022). https://doi.org/10.1016/j.sna.2021.113231

    Article  Google Scholar 

  23. N. Mokhtarifar, F. Goldschmidtboeing, P. Woias, ITO/glass as extended-gate of FET: a low-cost method for differential pH-sensing in alkaline solutions. J. Electrochem. Soc. 166, B896–B902 (2019). https://doi.org/10.1149/2.0401912jes

    Article  CAS  Google Scholar 

  24. T.M. Pan, C.H. Lin, S.T. Pang, Structural properties and sensing performance of TaOx/Ta stacked sensing films for extended-gate field-effect transistor pH sensors. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.163955

    Article  Google Scholar 

  25. P. Bergveld, Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. BME 19, 342–351 (1972). https://doi.org/10.1109/TBME.1972.324137

    Article  CAS  Google Scholar 

  26. N. Mokhtarifar, F. Goldschmidtboeing, P. Woias, Indium tin oxide coated PET for differential pH-sensing using field‐effect. Micro Nano Lett. 13, 1525–1530 (2018)

    Article  CAS  Google Scholar 

  27. A. Das, D.H. Ko, C.H. Chen, L.B. Chang, C.S. Lai, F.C. Chu, L. Chow, R.M. Lin, Highly sensitive palladium oxide thin film extended gate FETs as pH sensor. Sens. Actuators B Chem. 205, 199–205 (2014). https://doi.org/10.1016/j.snb.2014.08.057

    Article  CAS  Google Scholar 

  28. T. Bao, J. Ning, A. Bolag, N. Narengerile, Microstructure and optical and electrical properties of TiO2 nanotube thin films prepared by spin-coating method. Micro Nano Lett. 14, 1208–1212 (2019). https://doi.org/10.1049/mnl.2018.5642

    Article  CAS  Google Scholar 

  29. L. Scrimieri, A. Serra, D. Manno, P. Alifano, S. Maurizio Tredici, M. Calcagnile, L. Calcagnile, TiO2 films by sol–gel spin-coating deposition with microbial antiadhesion properties. Surf. Interface Anal. (2019). https://doi.org/10.1002/sia.6703

    Article  Google Scholar 

  30. T.M. Pan, Y.H. Huang, J.L. Her, B.S. Lou, S.T. Pang, Solution processed ZnInxOy sensing membranes on flexible PEN for extended-gate field-effect transistor pH sensors. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153630

    Article  Google Scholar 

  31. P.C. Yao, M.C. Lee, J.L. Chiang, Annealing effect of solgel TiO2 thin film on pH-EGFET sensor, Proc. 2014 International Symposium Computer Consumer Control. IS3C (2014) 577–580, (2014) https://doi.org/10.1109/IS3C.2014.157

  32. A.B. Rosli, Z. Awang, S.S. Shariffudin, S.H. Herman, Fabrication of integrated solid state electrode for extended gate-FET pH sensor. Mater. Res. Express. 6, 1–8 (2019). https://doi.org/10.1088/2053-1591/aae739

    Article  CAS  Google Scholar 

  33. L. Jiao, N. Barakat, Ion-sensitive field effect transistor as a PH sensor. J. Nanosci. Nanotechnol. 13, 1194–1198 (2013). https://doi.org/10.1166/jnn.2013.6065

    Article  CAS  Google Scholar 

  34. D.E. Yates, S. Levine, T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 1, 1807–1818 (1973)

    Google Scholar 

  35. C. Chen, Y. Zhang, H. Gao, K. Xu, X. Zhang, Fabrication of functional super-hydrophilic TiO2 thin film for pH detection. Chemosensors (2022). https://doi.org/10.3390/chemosensors10050182

    Article  Google Scholar 

Download references

Funding

This study was partially supported by the Ministry of Higher Education Malaysia under Fundamental Research Grant Scheme under the (Project Code: FRGS/1/2021/TK0/UITM/02/50).

Author information

Authors and Affiliations

Authors

Contributions

SB wrote and revised the article. SB and AB performed material and sample preparation. NS, NH and N carried out the data characterization. SH and Z conceptualized the central research idea, provided the theoretical framework, and supervised the research progress. SH and Z anchored the review and revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sukreen Hana Herman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, S.B., Kamarozaman, N.S., Mahzan, N.H. et al. Fabrication of integrated all-solid titanium dioxide and silver/silver chloride electrodes for facile pH electrochemical detection via extended-gate field effect transistor transducing method. J Mater Sci: Mater Electron 34, 1434 (2023). https://doi.org/10.1007/s10854-023-10852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10852-6

Navigation