Skip to main content
Log in

Effect of growth fluid concentration on characteristics of CeO2 nanorods and WO3/CeO2 nanostructured hybrid films for electrochromic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, cerium oxide nanorods were synthesized on fluorine-doped tin oxide-coated glass substrate using a hydrothermal process at different growth fluid concentrations varying from 0.01 M to 0.05 M and characterized. A nanostructured WO3/CeO2 hybrid films were formed by depositing tungsten oxide on cerium oxide nanorods by Direct current (DC) magnetron sputtering process at a partial pressure of oxygen (PaO2) 8 × 10−4 mbar and analyzed its structural, morphological, optical, and electrochemical properties by X-ray diffraction, scanning electron microscope, EDX, and UV spectroscopy techniques. The electrochromic properties were studied by developing a three-electrode electrochemical cell with WO3/CeO2 nanostructured hybrid film as a working electrode and observed improvement in the electrochromic properties of WO3/CeO2 nanostructured hybrid film developed at various growth fluid concentration for growing cerium oxide nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. K. Tajima, Y. Yamada, S. Bao, M. Okada, K. Yoshimura, Sol. Energy Mater. Sol. Cells 92, 120 (2008)

    CAS  Google Scholar 

  2. N. Kobayashi, S. Miura, M. Nishimura, H. Urano, Sol. Energy Mater. Sol. Cells 92, 136 (2008)

    CAS  Google Scholar 

  3. G.A. Niklasson, C.G. Granqvist, J. Mater. Chem. 17(2), 127–156 (2007)

    CAS  Google Scholar 

  4. F.M. Kelly, L. Meunier, C. Cochrane, V. Koncar, Displays 34, 1 (2013)

    CAS  Google Scholar 

  5. K. Naveen Kumar, H. Shaik, A. Pawar, L. N. Chandrashekar, S. A. Sattar, G. Nithya, R. Imran Jafri, V. Madhavi, J. Gupta, and G. V. Ashok Reddy, Mater. Today Proc. (2021).

  6. J. Gutpa, H. Shaik, K. Naveen Kumar, S.A. Sattar, Mater. Sci. Semicond. Process. 143, 106534 (2022)

    CAS  Google Scholar 

  7. J. Gupta, H. Shaik, K.N. Kumar, Ionics (Kiel) 27, 2307 (2021)

    CAS  Google Scholar 

  8. J. Gupta, H. Shaik, K.N. Kumar, S.A. Sattar, G.V.A. Reddy, Appl. Phys. A Mater. Sci. Process. 128, 1 (2022)

    Google Scholar 

  9. K.N. Kumar, H. Shaik, J. Gupta, S. Abdul, I. Jafri, A. Pawar, V. Madhavi, G. Nithya, Mater. Chem. Phys. 278, 125706 (2022)

    Google Scholar 

  10. K. Naveen Kumar, G. Nithya, H. Shaik, B. Hemanth, M. Chethana, K. Kishore, V. Madhavi, R.I. Jafri, S.A. Sattar, J. Gupta, G.V. Ashok Reddy, Phys. B Condens. Matter. 640, 413932 (2022)

    CAS  Google Scholar 

  11. V. Madhavi, P. Kondaiah, H. Shaik, K.N. Kumar, T.S.S. Kumar Naik, G.M. Rao, P.C. Ramamurthy, Mater. Chem. Phys. 274, 125095 (2021)

    CAS  Google Scholar 

  12. A. R. G V, H. Shaik, K. N. Kumar, V. Madhavi, H. D. Shetty, S. A. Sattar, M. Dhananjaya, B. Daruka Prasad, G. R. Kumar, and B. H. Doreswamy, Optik (Stuttg). 277, 170694 (2023).

  13. G. V. Ashok Reddy, H. Shaik, K. Naveen Kumar, R. Imran Jafri, S. A. Sattar, J. Gupta, and B. H. Doreswamy, Mater. Today Proc. (2022).

  14. K. Naveen Kumar, H. Shaik, V.M. Sathish, S. Abdul Sattar, IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/872/1/012147

    Article  Google Scholar 

  15. K. Naveen Kumar, H. Shaik, L.N. Chandrashekar, P. Aishwarya, S. Abdul Sattar, G. Nithya, V. Madhavi, R. Imran Jafri, J. Gupta, G.V. Ashok Reddy, Mater. Today Proc. 59, 275 (2022)

    CAS  Google Scholar 

  16. K.N. Kumar, G. Nithya, H. Shaik, L.N. Chandrashekar, P. Aishwarya, A.S. Pawar, J. Mater. Sci. Mater. Electron. 34(9), 789 (2023)

    CAS  Google Scholar 

  17. J. Gutpa, H. Shaik, K. Naveen Kumar, S.A. Sattar, J. Electron. Mater. 143, 106534 (2022)

    CAS  Google Scholar 

  18. T. Sanjana, M.A. Sunil, H. Shaik, K.N. Kumar, Mater. Chem. Phys. 281, 125922 (2022)

    CAS  Google Scholar 

  19. K. Naveen Kumar, H. Shaik, V. Madhavi, R. Imran Jafri, J. Gupta, G. Nithya, S.A. Sattar, G.V. Ashok Reddy, Appl. Phys. A Mater. Sci. Process. 128, 1 (2022)

    Google Scholar 

  20. S.V. Green, E. Pehlivan, C.G. Granqvist, G.A. Niklasson, Sol. Energy Mater. Sol. Cells 99, 339 (2012)

    CAS  Google Scholar 

  21. J.Z. Ou, S. Balendhran, M.R. Field, D.G. McCulloch, A.S. Zoolfakar, R.A. Rani, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-Zadeh, Nanoscale 4, 5980 (2012)

    CAS  Google Scholar 

  22. Z. Wang, G. Chumanov, Adv. Mater. 15, 1285 (2003)

    CAS  Google Scholar 

  23. J. Zhang, J.P. Tu, X.H. Xia, X.L. Wang, C.D. Gu, J. Mater. Chem. 21, 5492 (2011)

    CAS  Google Scholar 

  24. E. Cazzanelli, M. Castriota, R. Kalendarev, A. Kuzmin, J. Purans, Ionics (Kiel) 9, 95 (2003)

    CAS  Google Scholar 

  25. G.F. Cai, X.L. Wang, D. Zhou, J.H. Zhang, Q.Q. Xiong, C.D. Gu, J.P. Tu, RSC Adv. 3, 6896 (2013)

    CAS  Google Scholar 

  26. N.R. Kalidindi, F.S. Manciu, C.V. Ramana, A.C.S. Appl, Mater. Interfaces 3, 863 (2011)

    CAS  Google Scholar 

  27. K. Muthu Karuppasamy, A. Subrahmanyam, J. Phys. D Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/3/035302

    Article  Google Scholar 

  28. N. Ozer, C.M. Lampert, Thin Solid Films 349, 2 (1999)

    Google Scholar 

  29. J. Zhou, Y. Wei, G. Luo, J. Zheng, C. Xu, J. Mater. Chem. C 4, 1613 (2016)

    CAS  Google Scholar 

  30. E.O. Zayim, Sol. Energy Mater. Sol. Cells 87, 695 (2005)

    CAS  Google Scholar 

  31. P.S. Patil, S.H. Mujawar, A.I. Inamdar, S.B. Sadale, Appl. Surf. Sci. 250, 117 (2005)

    CAS  Google Scholar 

  32. S.R. Bathe, P.S. Patil, J. Phys. D. Appl. Phys. 40, 7423 (2007)

    CAS  Google Scholar 

  33. C.K. Wang, D. Sahu, S.C. Wang, J.L. Huang, Ceram. Int. 38, 2829 (2012)

    CAS  Google Scholar 

  34. S. Ramkumar, G. Rajarajan, J. Mater. Sci. Mater. Electron. 27, 1847 (2016)

    CAS  Google Scholar 

  35. J.M.O.R. De León, D.R. Acosta, U. Pal, L. Castañeda, Electrochim. Acta 56, 2599 (2011)

    Google Scholar 

  36. K.A. Gesheva, T. Ivanova, M. Kozlov, S. Boyadzhiev, J. Cryst. Growth 312, 1188 (2010)

    CAS  Google Scholar 

  37. V. Madhavi, P.J. Kumar, P. Kondaiah, O.M. Hussain, S. Uthanna, Ionics (Kiel) 20, 1737 (2014)

    CAS  Google Scholar 

  38. J. Xu, Y. Ao, D. Fu, C. Yuan, Colloids Surfaces A Physicochem. Eng. Asp. 334, 107 (2009)

    CAS  Google Scholar 

  39. A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Ceram. Int. 40, 4445 (2014)

    CAS  Google Scholar 

  40. G.V. Ashok Reddy, S.A. Sattar, K. Naveen Kumar, C.S. KaliPrasad, C. Devaraja, R. Imran Jafri, B.H. Doreswamy, Opt. Mater. (Amst) 134, 113220 (2022)

    CAS  Google Scholar 

  41. G.V. Ashok Reddy, H. Shaik, K.N. Kumar, H.D. Shetty, R.I. Jafri, R. Naik, J. Gupta, S.A. Sattar, B.H. Doreswamy, Phys. B Condens. Matter. 647, 414395 (2022)

    CAS  Google Scholar 

  42. A.A. Ansari, J. Semicond. 31, 0530011 (2010)

    Google Scholar 

  43. I.A. Khan, M.R. Belkhedkar, R.V. Salodkar, A.U. Ubale, A.I.P. Conf, Proc. 1953, 1 (2018)

    Google Scholar 

  44. N. Ramshanker, K.L. Ganapathi, M.S. Bhat, S. Mohan, IEEE Sens. J. 19, 10821 (2019)

    CAS  Google Scholar 

  45. A. Saiki, C. Kawai, T. Hashizume, K. Terayama, I.O.P. Conf, Ser. Mater. Sci. Eng. 18, 2 (2011)

    Google Scholar 

  46. P. Bocchetta, M. Santamaria, F. Di Quarto, J. Appl. Electrochem. 39, 2073 (2009)

    CAS  Google Scholar 

  47. T. Ishizaki, Y. Masuda, M. Sakamoto, Langmuir 27, 4780 (2011)

    CAS  Google Scholar 

  48. Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A.E. Nel, J.I. Zink, ACS Nano 6, 5366 (2012). https://doi.org/10.1021/nn3012114

    Article  CAS  Google Scholar 

  49. D. Rachel Malini, C. Sanjeeviraja, Int. J. Electrochem. Sci. 8, 1349 (2013)

    CAS  Google Scholar 

  50. G.A. Reddy, K. N. Kumar, H. Shaik, R. I. Jafri, R. Naik, B. H. Doreswamy, 70, 1 (2022).

  51. G.S. Wu, T. Xie, X.Y. Yuan, B.C. Cheng, L.D. Zhang, Mater. Res. Bull. 39, 1023 (2004)

    CAS  Google Scholar 

  52. Y.J. Cho, H. Jang, K.S. Lee, and D.R. Kim, Appl. Surf. Sci. 340, 96–101 (2015). https://doi.org/10.1016/j.apsusc.2015.02.138

    Article  CAS  Google Scholar 

  53. D. Channei, K. Chansaenpak, S. Phanichphant, P. Jannoey, W. Khanitchaidecha, A. Nakaruk, ACS Omega 6(30), 19771–19777 (2021). https://doi.org/10.1021/acsomega.1c02453

  54. R. Siva Prakash, C. Mahendran, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, J. Inorg. Organomet. Polym. Mater. 30, 5193 (2020)

    CAS  Google Scholar 

  55. M. Saini, B.S. Dehiya, A. Umar, Ceram. Int. 46, 986 (2020)

    CAS  Google Scholar 

  56. Y. Yin, C. Lan, H. Guo, C. Li, A.C.S. Appl, Mater. Interfaces 8, 3861 (2016)

    CAS  Google Scholar 

  57. Y.Y. Yang, P. Gong, W.D. Ma, R. Hao, X.Y. Fang, Chinese Phys. B (2021). https://doi.org/10.1088/1674-1056/abdb1e

    Article  Google Scholar 

  58. Y.H. Jia, P. Gong, S.L. Li, W.D. Ma, X.Y. Fang, Y.Y. Yang, M.S. Cao, Phys. Lett. Sect. A Gen. At. Solid State Phys. 384, 126106 (2020)

    CAS  Google Scholar 

  59. P. Gong, Y.Y. Yang, W.D. Ma, X.Y. Fang, X.L. Jing, Y.H. Jia, M.S. Cao, Phys. E Low-Dimensional Syst. Nanostruct. 128, 114578 (2021)

    CAS  Google Scholar 

  60. C.S. Hsu, C.C. Chan, H.T. Huang, C.H. Peng, W.C. Hsu, Thin Solid Films 516, 4839 (2008)

    CAS  Google Scholar 

  61. H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Appl. Catal. B Environ. 170–171, 206 (2015)

    Google Scholar 

  62. W. Shi, X. Zhang, J. Brillet, D. Huang, M. Li, M. Wang, Y. Shen, Carbon N. Y. 105, 387 (2016)

    CAS  Google Scholar 

Download references

Funding

The authors declare that no grants, funds, or other support were received for carrying out the research work that was presented in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Data curation, Investigation, and writing-original draft by GVAR Review & editing, Supervision by SAS. Formal and data analysis by KNK, BDP, CD and HSY. The final version of manuscript read and approved by all authors.

Corresponding author

Correspondence to Sheik Abdul Sattar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, G.V.A., Abdul Sattar, S., Kumar, K.N. et al. Effect of growth fluid concentration on characteristics of CeO2 nanorods and WO3/CeO2 nanostructured hybrid films for electrochromic applications. J Mater Sci: Mater Electron 34, 1475 (2023). https://doi.org/10.1007/s10854-023-10850-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10850-8

Navigation