Skip to main content
Log in

The effect of graphene layers on the optoelectronic properties of graphene–silicon photodetector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The graphene/silicon (g/Si) heterojunction has garnered significant attention due to the exceptional properties of graphene. As a result of graphene’s semi-metallic nature, the g/Si junction forms a Schottky diode. This study investigates the impact of the number of graphene layers on the optoelectronic properties of the Schottky diode by fabricating single, double, and triple-layer graphene–silicon Schottky diodes (GSSDs). The electro-optical properties of the samples were analyzed using light sources with varying wavelengths and intensities. The single-layer sample exhibited the highest responsivity in red light. Additionally, the response of the samples to all wavelengths decreased with increasing temperature. The samples response stability to light was favorable, with less than a 2% change observed after one month from the time of fabrication. Finally, the response speed of the samples to light was examined and reported. The single-layer sample exhibited a response speed of 277 microseconds (rise time) when the light was turned on and 307 microseconds (fall time) when the light was turned off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the first author upon reasonable request.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. L. Ji, P. Meduri, V. Agubra, X. Xiao, M. Alcoutlabi, Graphene-based nanocomposites for energy storage. Adv. Energy Mater. (2016). https://doi.org/10.1002/aenm.201502159

    Article  Google Scholar 

  3. J. Wang, X. Mu, M. Sun, T. Mu, Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Appl. Mater. Today. 16, 1–20 (2019). https://doi.org/10.1016/j.apmt.2019.03.006

    Article  Google Scholar 

  4. D.H. Shin, S.H. Choi, Graphene-based semiconductor heterostructures for photodetectors. Micromachines (2018). https://doi.org/10.3390/mi9070350

    Article  Google Scholar 

  5. D. Tomer, S. Rajput, L.J. Hudy, C.H. Li, L. Li, Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions. Nanotechnology. 26(21), 215702 (2015). https://doi.org/10.1088/0957-4484/26/21/215702

    Article  CAS  Google Scholar 

  6. A.K. Ranade, R.D. Mahyavanshi, P. Desai, M. Kato, M. Tanemura, G. Kalita, Ultraviolet light induced electrical hysteresis effect in graphene-GaN heterojunction. Appl. Phys. Lett. 114(15), 151102 (2019). https://doi.org/10.1063/1.5084190

    Article  CAS  Google Scholar 

  7. F. Qin, C. Xu, G. Zhu et al., Brightness improvement in a graphene inserted GaN/ZnO heterojunction light emitting diode. J. Phys. D Appl. Phys. 52(39), 395104 (2019). https://doi.org/10.1088/1361-6463/ab2bb3

    Article  CAS  Google Scholar 

  8. A. Alnuaimi, I. Almansouri, I. Saadat, A. Nayfeh, High performance graphene–silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition. Sol. Energy 164, 174–179 (2018). https://doi.org/10.1016/j.solener.2018.02.020

    Article  CAS  Google Scholar 

  9. L. Yang, X. Yu, W. Hu, X. Wu, Y. Zhao, D. Yang, An 8.68% efficiency chemically-doped-free graphene–silicon solar cell using silver nanowires network buried contacts. ACS Appl. Mater. Interfaces. 7(7), 4135–4141 (2015). https://doi.org/10.1021/am508211e

    Article  CAS  Google Scholar 

  10. A. Fattah, S. Khatami, C.C. Mayorga-Martinez, M. Medina-Sánchez, L. Baptista-Pires, A. Merkoçi, Graphene/Silicon heterojunction schottky diode for vapors sensing using impedance spectroscopy. Small. 10(20), 4193–4199 (2014). https://doi.org/10.1002/smll.201400691

    Article  CAS  Google Scholar 

  11. H.Y. Kim, K. Lee, N. McEvoy, C. Yim, G.S. Duesberg, Chemically modulated graphene diodes. Nano Lett. 13(5), 2182–2188 (2013). https://doi.org/10.1021/nl400674k

    Article  CAS  Google Scholar 

  12. A.A. Noroozi, Y. Abdi, A graphene/Si Schottky diode for the highly sensitive detection of protein. RSC Adv. 9(34), 19613–19619 (2019). https://doi.org/10.1039/c9ra03765a

    Article  CAS  Google Scholar 

  13. Y. Wang, S. Yang, D.R. Lambada, S. Shafique, A graphene–silicon Schottky photodetector with graphene oxide interlayer. Sens. Actuators Phys. 314, 112232 (2020). https://doi.org/10.1016/j.sna.2020.112232

    Article  CAS  Google Scholar 

  14. H. Selvi, N. Unsuree, E. Whittaker et al., Towards substrate engineering of graphene–silicon Schottky diode photodetectors. Nanoscale. 10(7), 3399–3409 (2018). https://doi.org/10.1039/c7nr09591k

    Article  CAS  Google Scholar 

  15. H. Selvi, E.W. Hill, P. Parkinson, T.J. Echtermeyer, Graphene-silicon-on-insulator (GSOI) Schottky diode photodetectors. Nanoscale. 10(40), 18926–18935 (2018). https://doi.org/10.1039/c8nr05285a

    Article  CAS  Google Scholar 

  16. B. Ezhilmaran, A. Patra, S. Benny et al., Recent developments in the photodetector applications of Schottky diodes based on 2D materials. J. Mater. Chem. C 9(19), 6122–6150 (2021). https://doi.org/10.1039/d1tc00949d

    Article  CAS  Google Scholar 

  17. K. Ihm, J.T. Lim, K.J. Lee et al., Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Appl. Phys. Lett. 97(3), 032113 (2010). https://doi.org/10.1063/1.3464319

    Article  CAS  Google Scholar 

  18. X. Li, D. Xie, H. Park et al., Anomalous behaviors of graphene transparent conductors in graphene–silicon heterojunction solar cells. Adv. Energy Mater. 3(8), 1029–1034 (2013). https://doi.org/10.1002/aenm.201300052

    Article  CAS  Google Scholar 

  19. Y.F. Li, W. Yang, Z.Q. Tu et al., Schottky junction solar cells based on graphene with different numbers of layers. Appl. Phys. Lett. 104(4), 043903 (2014). https://doi.org/10.1063/1.4863683

    Article  CAS  Google Scholar 

  20. M.A. Rehman, S.B. Roy, I. Akhtar et al., Thickness-dependent efficiency of directly grown graphene based solar cells. Carbon NY 148, 187–195 (2019). https://doi.org/10.1016/J.CARBON.2019.03.079

    Article  CAS  Google Scholar 

  21. H. Liu, Y. Liu, Controlled chemical synthesis in CVD graphene. Phys. Sci. Rev. (2019). https://doi.org/10.1515/psr-2016-0107

    Article  Google Scholar 

  22. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature. 458(7240), 877–880 (2009). https://doi.org/10.1038/nature07919

    Article  CAS  Google Scholar 

  23. Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene. Nano Res. 1(4), 273–291 (2010). https://doi.org/10.1007/S12274-008-8036-1

    Article  Google Scholar 

  24. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  25. X. Li, W. Cai, J. An et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  26. S. Riazimehr, A. Bablich, D. Schneider et al., Spectral sensitivity of graphene/silicon heterojunction photodetectors. Solid State Electron. 115, 207–212 (2016). https://doi.org/10.1016/J.SSE.2015.08.023

    Article  CAS  Google Scholar 

  27. S. Riazimehr, S. Kataria, J.M. Gonzalez-Medina et al., High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by interdigitating Schottky and gated regions. ACS Photonics 6(1), 107–115 (2019). https://doi.org/10.1021/acsphotonics.8b00951

    Article  CAS  Google Scholar 

  28. T. He, C. Lan, S. Zhou et al., Enhanced responsivity of a graphene/Si-based heterostructure broadband photodetector by introducing a WS2 interfacial layer. J. Mater. Chem. C 9(11), 3846–3853 (2021). https://doi.org/10.1039/d0tc05796g

    Article  CAS  Google Scholar 

  29. D. Periyanagounder, P. Gnanasekar, P. Varadhan, J.H. He, J. Kulandaivel, High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode. J. Mater. Chem. C 6(35), 9545–9551 (2018). https://doi.org/10.1039/c8tc02786b

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

AJF: experimental work, prepared the draft manuscript. MHJA: Conceptualization, Supervision, and manuscript editing.

Corresponding author

Correspondence to Ali Jabbar Fraih.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraih, A.J., Alzubaidy, M.H.J. The effect of graphene layers on the optoelectronic properties of graphene–silicon photodetector. J Mater Sci: Mater Electron 34, 1481 (2023). https://doi.org/10.1007/s10854-023-10848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10848-2

Navigation