Skip to main content
Log in

Enhanced reliability of ultra-thin multilayer ceramic capacitors (MLCCs) based on re-oxidation process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ultra-thin base metal electrodes-multilayered ceramic capacitors (BME-MLCCs) with high volume capacitance are considered to be a charming device for a diverse range of electric applications. Here, we fabricated the MLCCs with ultra-thin layer of ~ 1.2 μm and a high capacitance of ~ 47 μF via high oxygen re-oxidation process. Defect chemistry analysis of the re-oxidation process reveals that about 1 nm thick for inter-diffusion layer between Ni and BaTiO3 appeared in higher oxygen re-oxidation process compared with lower oxygen re-oxidation process dominated by 3 nm thick for inter-diffusion layer. The results show that oxygen vacancy concentration is decreased when oxygen partial pressures of re-oxidation rise from 10–6 to 10–4 atm. In addition, the Schottky barrier at the BaTiO3(BT)–Ni interface increased from 1.30 to 1.82 eV, and the amount of oxygen (x) in BaTiOx at the interface decreased from 3 to 2.75, with a smaller decrease, which is conducive to the improvement of the overall reliability of MLCCs. The final results show that the MLCCs with high oxygen re-oxidation process demonstrated a high breakdown voltage of 52.74 V/μm and superior reliability at 2.5 V and 105 °C. This work demonstrates a strategy of effectively improving the reliability of BME-MLCCs with high capacitances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. G. Yasin, S. Ibrahim, S. Ibraheem, J. Mater. Chem. A. 9(34), 18222–18230 (2021)

    CAS  Google Scholar 

  2. M. Nadeem, G. Yasin, M. Arif, Chem. Eng. J. 409, 128205 (2021)

    CAS  Google Scholar 

  3. S. Ullah, G. Yasin, A. Ahmad, Inorg. Chem. Front. 7(8), 1750–1761 (2020)

    CAS  Google Scholar 

  4. R. Iqbal, G. Yasin, M. Hamza, Coordin. Chem Rev. 447, 214152 (2021)

    CAS  Google Scholar 

  5. M.H.A. Mhareb, Y. Slimani, Y.S.A. Lajerami, Ceram. Int. 46(18), 28877–28886 (2020)

    CAS  Google Scholar 

  6. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, Rsc. Adv. 11(19), 11500–11512 (2021)

    CAS  Google Scholar 

  7. S.R. Yousefi, O. Amiri, Ultrason. Sonochem. 58, 104–619 (2019)

    Google Scholar 

  8. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 58, 104–110 (2019)

    Google Scholar 

  9. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder. Technol. 28(4), 1258–1262 (2017)

    CAS  Google Scholar 

  10. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, J. Mater. Sci-Mater. El. 27, 1244–1253 (2016)

    CAS  Google Scholar 

  11. P. Mehdizadeh, M. Jamdar, M.A. Mahdi, Arab. J. Chem. 1, 104–106 (2023)

    Google Scholar 

  12. F.Z. Yao, Q. Yuan, Q. Wang, H. Wang, Nanoscale 12, 17165–17184 (2020)

    CAS  Google Scholar 

  13. K. Hong, T.H. Lee, J.M. Suh, S.H. Yoon, H.W. Jang, J. Mater. Chem. C. 7, 9782–9802 (2019)

    CAS  Google Scholar 

  14. C.Q. Zhu, Z.M. Cai, L.M. Guo, L.T. Li, X.H. Wang, J. Am. Ceram. Soc. 104(1), 273–283 (2021)

    CAS  Google Scholar 

  15. Z.B. Tian, X.H. Wang, H.L. Gong, T.H. Song, K.H. Hur, L.T. Liz, J. Am. Ceram. Soc. 94(4), 973–977 (2011)

    CAS  Google Scholar 

  16. G. Arlt, D. Hennings, G. De, J. Appl. Phys. 58(4), 1619–1625 (1985)

    CAS  Google Scholar 

  17. A.V. Polotai, A.V. Ragulya, C.A. Randall, Ferroelectrics 288(1), 93–102 (2003)

    CAS  Google Scholar 

  18. S.S. Park, Ferroelectrics 406(1), 75–82 (2010)

    CAS  Google Scholar 

  19. Z. Cai, X. Wang, L. Li, Adv. Theor. Simul. 2(4), 1800179 (2019)

    CAS  Google Scholar 

  20. C. Neusel, H. Jelitto, D. Schmidt, R. Janssen, F. Felten, G.A. Schneider, J. Eur. Ceram. Soc. 35(1), 113–123 (2015)

    CAS  Google Scholar 

  21. A. Honda, S. Higai, Y. Motoyoshi, N. Wada, H. Takagi, Jpn. J. Appl. Phys. 50(92), 09NE01 (2011)

    Google Scholar 

  22. D.I. Woodward, I.M. Reaney, G.Y. Yang, E.C. Dickey, C.A. Randall, Appl. Phys. Lett. 84(23), 4650–4652 (2004)

    CAS  Google Scholar 

  23. T. Hoshina, R. Sase, J. Nishiyama, H. Takeda, T. Tsurumi, Jpn. J. Appl. Phys. 126(5), 263–268 (2018)

    CAS  Google Scholar 

  24. Y. Mizuno, T. Hagiwara, H. Kishi, Jpn. J. Appl. Phys. 115(1342), 360–364 (2007)

    CAS  Google Scholar 

  25. G. Okuma, N. Saito, K. Mizuno, Y. Iwazaki, H. Kishi, A. Takeuchi, M. Uesugi, K. Uesugi, F. Wakai, Acta Mate. 206, 116605 (2021)

    CAS  Google Scholar 

  26. M.R. Opitz, K. Albertsen, J.J. Beeson, D.F. Hennings, J.L. Routbort, C.A. Randall, J. Am. Ceram. Soc. 86(11), 1879–1884 (2003)

    CAS  Google Scholar 

  27. Z.M. Cai, C.Q. Zhu, H.X. Wang, P.Y. Zhao, L.L. Chen, L.T. Li, X.H. Wang, J. Mater. Chem. A 7(24), 14575–14582 (2019)

    CAS  Google Scholar 

  28. A. Morelli, G. McLaughlin, M. Strawhorne, J.A. Byrne, P. Lemoine, A.C.S. Appl, Energy Mater. 3(10), 4649–4656 (2021)

    CAS  Google Scholar 

  29. Z.L. Gui, Y.L. Wang, L.T. Li, Ceram. Int. 30(7), 1275–1278 (2004)

    CAS  Google Scholar 

  30. G.Y. Yang, S.I. Lee, Z.J. Liu, C.J. Anthony, E.C. Dickey, Z.K. Liu, C.A. Randall, Acta Mater. 54(13), 3513–3523 (2006)

    CAS  Google Scholar 

  31. A.V. Polotai, G.Y. Yang, E.C. Dickey, C.A. Randall, J. Am. Ceram. Soc. 90(12), 3811–3817 (2007)

    CAS  Google Scholar 

  32. A.V. Polotai, I. Fujii, D.P. Shay, G.Y. Yang, E.C. Dickey, C.A. Randall, J. Am. Ceram. Soc. 91(8), 2540–2544 (2008)

    CAS  Google Scholar 

  33. A.V. Polotai, T.H. Jeong, G.Y. Yang, E.C. Dickey, C.A. Randall, P. Pinceloup, A.S. Gurav, J. Electroceram. 23(1), 6–12 (2009)

    CAS  Google Scholar 

  34. Y.C. Wu, S.F. Wang, D.E. McCauley, M.S.H. Chu, H.Y. Lu, J. Am. Ceram. Soc. 90(9), 2926–2934 (2007)

    CAS  Google Scholar 

  35. J. Weiss, J. Mater. Sci. 23(6), 2195–2204 (1988)

    CAS  Google Scholar 

  36. C.Q. Zhu, Q.C. Zhao, Z.M. Cai, L.M. Guo, L.T. Li, X.H. Wang, J. Alloy. Compd. 829, 154496 (2020)

    CAS  Google Scholar 

  37. F.A. Rabuffetti, R.L. Brutchey, J. Am. Ceram. Soc. 134(22), 9475–9487 (2012)

    CAS  Google Scholar 

  38. X.Q. Jin, D.Z. Sun, M.J. Zhang, Y.D. Zhu, J.J. Qian, J. Electroceram. 22(1), 285–290 (2009)

    CAS  Google Scholar 

  39. A.F. Carley, P.R. Chalker, J.C. Riviere, M.W. Roberts, J. Chem. Soc. Faraday Trans. 83(2), 351–370 (1987)

    CAS  Google Scholar 

  40. S.A. Nasser, Appl. Surf. Sci. 157(1–2), 14–22 (2000)

    CAS  Google Scholar 

  41. H.W. Lee, M.S.H. Chu, H.Y. Lu, J. Am. Ceram. Soc. 94(5), 1556–1562 (2011)

    CAS  Google Scholar 

  42. K. Morita, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 46(5R), 2984 (2007)

    CAS  Google Scholar 

  43. J.K. Lee, K.S. Hong, J.W. Jang, J. Am. Ceram. Soc. 84(9), 2001–2006 (2001)

    CAS  Google Scholar 

  44. M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Ceram. Soc. 130(22), 6955–6963 (2008)

    CAS  Google Scholar 

  45. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, Int. J. Hydrogen. Energy 47(31), 14319–14330 (2022)

    CAS  Google Scholar 

  46. S.R. Yousefi, M. Ghanbari, O. Amiri, J. Am. Ceram. Soc. 1, 1 (2021)

    Google Scholar 

  47. L.E. Cross, Ferroelectrics 76(1), 241–267 (1987)

    CAS  Google Scholar 

  48. Y. Slimani, B. Unal, E. Hannachi, Ceram. Int. 45(9), 11989–12000 (2019)

    CAS  Google Scholar 

  49. T. Tsurumi, M. Shono, H. Kakemoto, S. Wada, K. Saito, H. Chazono, J. Electroceram. 21(1), 17–21 (2008)

    CAS  Google Scholar 

  50. I.A. Santos, J.A. Eiras, J. Phys-Condens. Mat. 13(50), 11733 (2001)

    CAS  Google Scholar 

  51. D. Damjanovic, Rep. Prog. Phys. 61(9), 1267–1324 (1998)

    CAS  Google Scholar 

  52. Y.L. Li, L.E. Cross, L.Q. Chen, J. Appl. Phys. 98(6), 064101 (2005)

    Google Scholar 

  53. Y.B. Kil, K. Nagatoh, H. Kakemoto, S. Wada, S. Takahashi, J. Am. Ceram. Soc. 85(8), 1993–1996 (2002)

    Google Scholar 

  54. I. Fujii, M. Ugorek, S. Trolier-McKinstry, J. Appl. Phys. 107(10), 104116 (2010)

    Google Scholar 

  55. I. Fujii, S. Trolier-McKinstry, C. Nies, J. Am. Ceram. Soc. 94(1), 58–63 (2011)

    Google Scholar 

  56. S.H. Yoon, J. Am. Ceram. Soc. 101, 1544–1553 (2018)

    CAS  Google Scholar 

  57. M. Nagayoshi, K. Matsubara, N. Fujikawa, Jpn. J. Appl. Phys. 59, SPPC01 (2020)

    CAS  Google Scholar 

  58. S.J. Almalki, S. Nadarajah, Reliab. Eng. Syst. Saf. 124, 32–55 (2014)

    Google Scholar 

  59. H. Chazono, J. Appl. Phys. 40, 5624 (2001)

    CAS  Google Scholar 

Download references

Funding

This study was supported by the National Key Research Program of China (Grant No. 2022YFB3807403), Natural Science Foundation of Guangdong Province (Grant No. 2022A1515012604), Foundation of State Key Laboratory of New Electronic Components and Materials (Grant No. FHR-JS-202011012), and Joint Innovation Center of Advanced Electronic Components and Materials (Grant No. FHR-JS-202103001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by XH, PW, DB, and KL. Characterization and related discussion were performed by XH, PW and LK. Modified and reviewed the paper were performed by GJ and QW. Funding acquisition and Project administration were performed by LZ, RS, XC and ZF. The fifirst draft of the manuscript was written by XH and all authors commented on previous versions of the manuscript. All authors read and approved the fifinal manuscript.

Corresponding authors

Correspondence to Lei Zhang or Zhenxiao Fu.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wang, P., Zhang, L. et al. Enhanced reliability of ultra-thin multilayer ceramic capacitors (MLCCs) based on re-oxidation process. J Mater Sci: Mater Electron 34, 1463 (2023). https://doi.org/10.1007/s10854-023-10836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10836-6

Navigation