Skip to main content
Log in

An experimental and theoretical approach for temperature-dependent Raman-active optical phonons driven thermal conductivity of layered PbBi2Se4 nano-flowers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Topologically active, crystalline layered PbBi2Se4 has been probed for significantly low thermal conductivity and excellent thermal properties. The present work focuses on the investigation of thermal properties of the PbBi2Se4 composite, such as diffusivity, effusivity, specific heat, Debye temperature, thermal conductivity, lattice thermal conductivity using temperature, and incident laser power-dependent Raman scattering. The thermal properties are very important for thermal energy harvesting applications. The obtained results have been substantiated with first-principles calculations. It is observed that the septuple interface Se atoms govern high-frequency Raman Active modes, and their role is crucial for thermal properties. High phonon density of states at low-frequency, strong phonon coupling drove scattering, and low phonon lifetime of optically active \({\mathrm{E}}_{\mathrm{g}}^{2}\) and \({\mathrm{A}}_{1\mathrm{g}}^{2}\) modes govern the low thermal conductivity (55 Wm−1 K−1). The thermal conductivity of PbBi2Se4 is an order of magnitude lower than the other ternary compounds from the PbxBi2ySe3x+y family but is comparable to that of transition metal chalcogenide materials (e. g. MoS2). The present work provides an efficient method to investigate the thermal conductivity of layered material. Further, it can be used to tune the thermal properties of the topological insulators by exploring the phonon dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. M.G. Kanatzidis, Acc Chem. Res. 38, 359–368 (2005). https://doi.org/10.1021/ar040176w

    Article  CAS  Google Scholar 

  2. A. Chatterjee, S.N. Guin, K. Biswas, Phys. Chem. Chem. Phys. 16, 14635 (2014). https://doi.org/10.1039/C4CP01885K

    Article  CAS  Google Scholar 

  3. R. Aher, A. Bhorde, S. Nair, H. Borate, S. Pandharkar, D. Naik, P. Vairale, S. Karpe, D. Late, M. Prasad, S. Jadkar, Phys. Status Solidi Appl. Mater. Sci. 216, 1900065 (2019). https://doi.org/10.1002/pssa.201900065

    Article  CAS  Google Scholar 

  4. S. Suryawanshi, S. Guin, A. Chatterjee, V. Kashid, M. More, D. Late, K. Biswas, J. Mater. Chem. C 4(5), 1096–1103 (2016). https://doi.org/10.1039/c5tc02993g

    Article  CAS  Google Scholar 

  5. A. Chatterjee, K. Biswas, Angew. Chemie-Int. Ed. 54, 5623 (2015). https://doi.org/10.1002/ange.201500281

    Article  CAS  Google Scholar 

  6. M. Ohta, C.D. Young, M. Kuniib, G.M. Kanatzidis, J. Mater. Chem. A 2, 20048 (2014). https://doi.org/10.1039/C4TA05135A

    Article  CAS  Google Scholar 

  7. R. Aher, A. Bhorde, V. Sharma, S. Nair, H. Borate, S. Pandharkar, S. Rondiya, M. Chaudhary, C. Gopinath, S. Suryawanshi, M. More, S. Jadkar, J. Mater. Sci. Mater. Electron. 29, 10494 (2018). https://doi.org/10.1007/s10854-018-9114-0

    Article  CAS  Google Scholar 

  8. L. Zhang, D.J. Singh, Phys. Rev. B 81, 245119 (2010). https://doi.org/10.1103/PhysRevB.81.245119

    Article  CAS  Google Scholar 

  9. R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R. Walker, H.G. Xing, ACS Nano 8, 986 (2014). https://doi.org/10.1021/nn405826k

    Article  CAS  Google Scholar 

  10. L.E. Shelimova, O.G. Karpinskii, V.S. Zemskov, Inorg. Mater. 44, 927 (2008). https://doi.org/10.1134/S0020168508090057

    Article  CAS  Google Scholar 

  11. M. Ruck, P.F. Poudeu, Z. Anorg, Allg. Chem. 3, 475 (2008). https://doi.org/10.1002/zaac.200700453

    Article  CAS  Google Scholar 

  12. L.E. Shelimova, P.P. Konstantinov, O.G. Karpinskii, E.S. Avilov, M.A. Kretova, V.S. Zemskov, Inorg. Mater. 40, 1146 (2004). https://doi.org/10.1023/B:INMA.0000048211.53027.e7

    Article  CAS  Google Scholar 

  13. M.G. Kanatzidis, The Role of Solid-State Chemistry in the Discovery of New Thermoelectric Materials, in Recent Trends in Thermoelectric Materials Research I. (Elsevier, Amsterdam, 2001)

    Google Scholar 

  14. L. Shelimova, P. Konstantinov, O. Karpinsky, E. Avilov, M. Kretova, V. Zemskov, J. Alloys Compd. 329, 50 (2001). https://doi.org/10.1016/S0925-8388(01)01685-1

    Article  CAS  Google Scholar 

  15. H. Jin, J.H. Song, A.J. Freeman, M.G. Kanatzidis, Phys. Rev. B 83, 04120 (2011). https://doi.org/10.1103/PhysRevB.83.041202

    Article  CAS  Google Scholar 

  16. Y. Zhang, C. Di, Y. Lv, S. Dong, J. Zhou, S. Yao, Y. Chen, M. Lu, Y. Chen, Cryst. Growth Des. 20, 680 (2020). https://doi.org/10.1021/acs.cgd.9b01108

    Article  CAS  Google Scholar 

  17. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  18. G. Ding, J. Carrete, W. Li, G.Y. Gao, K. Yao, Appl. Phys. Lett. 108, 233902 (2016). https://doi.org/10.1063/1.4953588

    Article  CAS  Google Scholar 

  19. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, J. Snyder Appl. Mater. 3, 041506 (2015). https://doi.org/10.1063/1.4908244

    Article  CAS  Google Scholar 

  20. G. Tan, F. Shi, H. Sun, L.D. Zhao, C. Uher, V.P. Dravid, M.G. Kanatzidis, J. Mater. Chem. A. 2, 20849 (2014). https://doi.org/10.1039/c4ta05530f

    Article  CAS  Google Scholar 

  21. R. Cusco, L.E. Alarcon, J. Ibanez, L. Artus, J. Jimenez, B. Wang, M.J. Callahan, Phys. Rev. B 75, 165202 (2007). https://doi.org/10.1103/PhysRevB.75.165202

    Article  CAS  Google Scholar 

  22. B. Irfan, S. Sahoo, A.P.S. Gaur, M. Ahmadi, M.J.F. Guinel, R.S. Katiyar, R. Chatterjee, J. Appl. Phys. 115, 173506 (2014). https://doi.org/10.1063/1.4871860

    Article  CAS  Google Scholar 

  23. R. Kumar, G. Sahu, S.K. Saxena, H.M. Rai, P. R., Sagdeo Silicon 6, 117 (2014). https://doi.org/10.1007/s12633-013-9176-9

    Article  CAS  Google Scholar 

  24. S. Sahoo, A.P.S. Gaur, M. Ahmadi, M.J.F. Guinel, R.S. Katiyar, J. Phys. Chem. C. 117, 9042 (2013). https://doi.org/10.1021/jp402509w

    Article  CAS  Google Scholar 

  25. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008). https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  26. K. Strzałkowski, F. Firszt, A. Marasek, Int J Thermophys 35, 2140 (2014). https://doi.org/10.1007/s10765-014-1741-y

    Article  CAS  Google Scholar 

  27. R. Shuker, R.W. Gammon, Phys. Rev. Lett. 25, 222 (1970). https://doi.org/10.1103/PhysRevLett.25.222

    Article  CAS  Google Scholar 

  28. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2018). https://doi.org/10.1063/1.2907977

    Article  CAS  Google Scholar 

  29. H. Malekpour, A.A. Balandin, J. Raman Spectrosc. 49, 106 (2018). https://doi.org/10.1002/jrs.5230

    Article  CAS  Google Scholar 

  30. Y. Zhao, X. Luo, J. Zhang, J. Wu, X. Bai, M. Wang, J. Jia, H. Peng, Z. Liu, S.Y. Quek, Q. Xiong, Phys. Rev. B 90, 245428 (2014). https://doi.org/10.1103/PhysRevB.90.245428

    Article  CAS  Google Scholar 

  31. L. Shelimova, O. Karpinskii, P. Konstantinov, E. Avilov, M. Kretova, G. Lubman, I. Nikhezina, V. Zemskov, Inorg. Mater. 46, 120 (2010). https://doi.org/10.1134/S0020168510020068

    Article  CAS  Google Scholar 

  32. Y. Wang, N. Xu, D. Li, J. Zhu, Adv. Funct. Mater. 27, 1604134 (2017). https://doi.org/10.1002/adfm.201604134

    Article  CAS  Google Scholar 

  33. A. Taube, J. Judek, A. Łapinska, M. Zdrojek, A.C.S. Appl, Mater. Interfaces 7, 5061 (2015). https://doi.org/10.1021/acsami.5b00690

    Article  CAS  Google Scholar 

  34. N. Peimyoo, J. Shang, S. Yang, Y. Wang, C. Cong, T. Yu, Nano Res. 8, 1210 (2015). https://doi.org/10.1007/s12274-014-0602-0

    Article  CAS  Google Scholar 

  35. T. Yoo, E. Lee, S. Dong, X. Li, X. Liu, K.F. Jacek, M. Dobrowolska, T. Luo, APL Mater. 5, 066101 (2017). https://doi.org/10.1063/1.4984974

    Article  CAS  Google Scholar 

  36. A.L. Cottrill, A.T. Liu, Y. Kunai, V.B. Koman, A. Kaplan, S.G. Mahajan, P. Liu, A.R. Toland, M.S. Strano, Nat. Commun. 9, 664 (2018). https://doi.org/10.1038/s41467-018-03029-x

    Article  CAS  Google Scholar 

  37. J. Liu, R.G. Kutty, Q. Zheng, V. Eswariah, S. Sreejith, Z. Liu, Small 13, 1602456 (2017). https://doi.org/10.1002/smll.201602456

    Article  CAS  Google Scholar 

  38. D. Fournier, M. Marangolo, M. Eddrief, N.N. Kolesnikov, C. Fretigny, J. Phys.: Condens. Matter. 30, 115701 (2018). https://doi.org/10.1088/1361-648x/aaad3c

    Article  CAS  Google Scholar 

  39. J.L. Battaglia, A. Kusiak, C. Rossignol, N. Chigarev, Phys. Rev. B 76, 184110 (2007). https://doi.org/10.1103/PhysRevB.76.184110

    Article  CAS  Google Scholar 

  40. M. Thripuranthaka, R.V. Kashid, C.S. Rout, D.J. Late, Appl. Phys. Lett. 104, 081911 (2014). https://doi.org/10.1063/1.4866782

    Article  CAS  Google Scholar 

  41. Y. Kim, X. Chen, Z. Wang, J. Shi, I. Miotkowski, Y. Chen, P. Sharma, A. Sharma, M. Hekmaty, Z. Jiang, D. Smirnov, Appl. Phys. Lett. 100, 071907 (2012). https://doi.org/10.1063/1.3685465

    Article  CAS  Google Scholar 

  42. F. Zhou, Y. Zhao, W. Zhou, D. Tang, Appl. Sci. 8, 1794 (2018). https://doi.org/10.3390/app8101794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rahul Aher is thankful to Savitribai Phule Pune University, Pune, for Bharatratna J. R. D. Tata Gunwant Sanshodhak Shishyavruti. Ashish Waghmare, Shruti Shah, Pratibha Shinde, Shruti Shah, and Yogesh Hase are grateful to the Ministry of New and Renewable Energy (MNRE), Government of India New Delhi, for the National Renewable Energy (NRE) fellowship and financial assistance. Ashvini Punde is thankful to the Mahatma Jyotiba Phule Research and Training Institute (MAHAJYOTI), Government of Maharashtra, for the Mahatma Jyotiba Phule Research Fellowship (MJPRF). Finally, Sandesh Jadkar and Mohit Prasad thank the University Grants Commission (UPE program), New Delhi, and Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi, for special financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RA: methodology, formal analysis, investigation, data curation, writing-original draft. PG: methodology, formal analysis, investigation, data curation, writing-original draft. AP: methodology, conceptualization, validation, investigation. PS: conceptualization, validation, formal analysis, investigation. AW: methodology, formal analysis, investigation, data curation. YH: methodology, conceptualization, validation, formal analysis, investigation. SS: methodology, validation, formal analysis, investigation. BB: methodology, validation, formal analysis, investigation. SR: data curation, formal analysis, investigation. SL: Data curation, formal analysis, investigation. VD: data curation, formal analysis, investigation. SR: methodology, conceptualization, validation, investigation. MP: formal analysis, investigation, data curation, writing-review, and editing. SJ: visualization, writing-review, editing, supervision, funding acquisition.

Corresponding author

Correspondence to Sandesh Jadkar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1837 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aher, R., Gaikwad, P., Punde, A. et al. An experimental and theoretical approach for temperature-dependent Raman-active optical phonons driven thermal conductivity of layered PbBi2Se4 nano-flowers. J Mater Sci: Mater Electron 34, 1419 (2023). https://doi.org/10.1007/s10854-023-10831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10831-x

Navigation