Skip to main content
Log in

Investigation of electrical and mechanical properties of silicon carbide whisker-hexagonal boron nitride/ethylene propylene diene monomer composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the uneven distribution of electric field and mechanical stress, cable joints often become the weakest link in High-Voltage Direct Current (HVDC) transmission systems. To address this problem, in this paper, ethylene propylene diene monomer (EPDM) and silicon carbide whisker (SiCw) were chosen as the rubber matrix and functional fillers, respectively, for fabricating the SiCw/EPDM composites with excellent nonlinear conductivity. The results show that SiCw can significantly improve the nonlinear conductivity of EPDM but at the expense of electric breakdown strength. To further reconcile the nonlinear conductivity and electric breakdown strength, hexagon boron nitride (h-BN) with excellent insulating property was also introduced into EPDM to obtain SiCw/h-BN/EPDM composites. The electrical and mechanical properties of the co-doped composites were systematically studied, and the results show that with the introduction of h-BN, the nonlinear conductivity characteristic of the composite was still maintained, while the breakdown field strength and mechanical properties were improved. The results of simulation analyses also proved that the SiCw/h-BN/EPDM composite material served as reinforced insulation in cable middle joint can markedly relieve electric field concentration. This work demonstrates that SiCw/h-BN/EPDM composites have greater potential for application in HVDC cable accessories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. J. Hu, X.L. Zhao, X. Yang, J.L. He, High Volt. Eng. 43, 2 (2017). https://doi.org/10.13336/j.1003-6520.hve.20170123008

    Article  Google Scholar 

  2. J.C. Xie, J. Hu, J.L. He, Z.C. Guo, Y. Yin, High Volt. Eng. 40, 3 (2014). https://doi.org/10.13336/j.1003-6520.hve.2014.03.015

    Article  CAS  Google Scholar 

  3. B.Z. Han, M.L. Fu, C.Y. Li, H. Zhao, S. Hou, Z.H. Li, High Volt. Eng. 40, 9 (2014). https://doi.org/10.13336/j.1003-6520.hve.2014.09.004

    Article  CAS  Google Scholar 

  4. J. Hu, X. Yang, J.L. He, High Volt. Eng. 42, 9 (2016). https://doi.org/10.13336/j.1003-6520.hve.20160907027

    Article  Google Scholar 

  5. J. Li, B.X. Du, H.C. Liang, M. Xiao, M.L. Fu, Y. Jing, Y. Gao, ICHVE (2018). https://doi.org/10.1109/ICHVE.2018.8641890

    Article  Google Scholar 

  6. Z.L. Li, Z.R. Yang, Y.Q. Xing, W.B. Zhu, J.G. Su, X.X. Kong, J.P. Jiang, B.X. Du, IEEE Trans. Appl. Supercond. 29, 2 (2018). https://doi.org/10.1109/TASC.2018.2889357

    Article  Google Scholar 

  7. K.X. Li, B.Y. Zhang, X.W. Li, F.F. Yan, L.L. Wang, IEEE Trans. Compon. Packag. Manuf. Technol 11, 11 (2021). https://doi.org/10.1109/TCPMT.2021.3106962

    Article  Google Scholar 

  8. B.Z. Han, W.M. Guo, Z.H. Li, J. Funct. Mater. 39, 9 (2008). https://doi.org/10.3321/j.issn:1001-9731.2008.09.022

    Article  Google Scholar 

  9. Z.Y. Yan, B.Z. Han, H. Zhao, X. Wang, S. Hou, M.L. Fu, High Volt. Eng. 40, 9 (2014). https://doi.org/10.13336/j.1003-6520.hve.2014.09.008

    Article  CAS  Google Scholar 

  10. J.C. Xie, J. Hu, J.L. He, L. Gao, Z.C. Guo, High Volt. Eng. 41, 2 (2015). https://doi.org/10.13336/j.1003-6520.hve.2015.02.013

    Article  CAS  Google Scholar 

  11. C.Y. Liu, Y. Zheng, B. Zhang, X.Q. Zheng, S.Q. Hu, K. Han, Ieee Access (2019). https://doi.org/10.1109/access.2019.2906662

    Article  Google Scholar 

  12. P. Han, J.W. Zha, M.S. Zheng, Y.Q. Wen, Z.M. Dang, J. Appl. Phys. 122, 19 (2017). https://doi.org/10.1063/1.4996261

    Article  CAS  Google Scholar 

  13. M. Bin Ahmad, A. Fatehi, A. Zakaria, S. Mahmud, S.A. Mohammadi, Int. J. Mol. Sci. 13, 12 (2012). https://doi.org/10.3390/ijms131215640

    Article  CAS  Google Scholar 

  14. P. Han, J.W. Zha, M.S. Zheng, H.Y. Li, Y.Q. Wen, Z.M. Dang, J. Appl. Phys. 123, 20 (2018). https://doi.org/10.1063/1.5024769

    Article  CAS  Google Scholar 

  15. Q.G. Chi, M.J. Feng, T.D. Zhang, C.H. Zhang, Q.Q. Lei, ICEMPE (2019). https://doi.org/10.1109/ICEMPE.2019.8727377

    Article  Google Scholar 

  16. B.H. OuYang, Z.X. Liu, X.B. Wang, T.D. Zhang, C.H. Zhang, Q.G. Chi, Aip Adv. 10, 9 (2020). https://doi.org/10.1063/5.0021066

    Article  CAS  Google Scholar 

  17. Z.T. Meng, T.D. Zhang, Q.G. Chi, C.H. Zhang, C. Tang, H. Li, Q.Q. Lei, J. Mater. Sci.: Mater. Electron 32, 13 (2021). https://doi.org/10.1007/s10854-021-06204-x

    Article  CAS  Google Scholar 

  18. X.Y. Wang, Q.G. Chen, Q.G. Chi, T.D. Zhang, L. Lin, J. Mater. Sci.: Mater. Electron 30, 11 (2019). https://doi.org/10.1007/s10854-019-01367-0

    Article  CAS  Google Scholar 

  19. L. Gao, X. Yang, J. Hu, J.L. He, Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.02.016

    Article  Google Scholar 

  20. J.J. Tian, R. Xu, H.L. He, Y.Y. Feng, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.06.339

    Article  Google Scholar 

  21. T.D. Zhang, C.X. Dai, C.H. Zhang, Q.G. Chi, J. Electron. Mater. 51, 3 (2022). https://doi.org/10.1007/s11664-021-09397-3

    Article  CAS  Google Scholar 

  22. Q.G. Chi, Z.T. Meng, T.D. Zhang, C.H. Zhang, C. Tang, Q.Q. Lei, J. Mater. Sci.: Mater. Electron 32, 23 (2021). https://doi.org/10.1007/s10854-021-07149-x

    Article  CAS  Google Scholar 

  23. Q.G. Chi, Y.Y. Hao, T.D. Zhang, C.H. Zhang, Q.G. Chen, X. Wang, J. Mater. Sci.: Mater. Electron 29, 23 (2018). https://doi.org/10.1007/s10854-018-0093-y

    Article  CAS  Google Scholar 

  24. Q.G. Chi, M. Yang, T.D. Zhang, C.H. Zhang, J. Mater. Sci.: Mater. Electron 30, 14 (2019). https://doi.org/10.1007/s10854-019-01699-x

    Article  CAS  Google Scholar 

  25. Q.G. Chi, M. Yang, C.H. Zhang, T.D. Zhang, Y. Feng, Q.G. Chen, IEEE Trans. Dielect Elect. Insul. 26, 4 (2019). https://doi.org/10.1109/tdei.2019.007860

    Article  CAS  Google Scholar 

  26. X. Yang, S.J. Wang, Z.W. Huang, X.L. Zhao, J. Hu, Q. Li, J.L. He, Compos. Sci. Technol. (2023). https://doi.org/10.1016/j.compscitech.2023.109918

    Article  Google Scholar 

  27. J. Li, B.X. Du, X.X. Kong, Z.L. Li, IEEE Trans. Dielect Elect. Insul. 24, 3 (2017). https://doi.org/10.1109/tdei.2017.006198

    Article  CAS  Google Scholar 

  28. Q.G. Chi, S. Cui, T.D. Zhang, M. Yang, Q.G. Chen, Trans. China Electrotechnical Soc. 35, 20 (2020). https://doi.org/10.19595/j.cnki.1000-6753.tces.191168

    Article  Google Scholar 

  29. W.L. Li, T.D. Zhang, Y.F. Hou, Y. Zhao, D. Xu, W.P. Cao, W.D. Fei, RSC Adv. 4, 100 (2014). https://doi.org/10.1039/C4RA08280J

    Article  CAS  Google Scholar 

  30. T.D. Zhang, W.L. Li, Y.F. Hou, Y. Yu, W.P. Cao, Y. Feng, W.D. Fei, RSC Adv. 6, 76 (2016). https://doi.org/10.1039/C6RA14776C

    Article  CAS  Google Scholar 

  31. Y.F. Hou, T.D. Zhang, W.L. Li, W.P. Cao, Y. Yu, D. Xu, W. Wang, X.L. Liu, W.D. Fei, RSC Adv. 5, 76 (2015). https://doi.org/10.1039/C5RA07337E

    Article  CAS  Google Scholar 

  32. B.X. Du, Z.R. Yang, Z.L. Li, J. Li, IEEE Trans. Dielect. Elect. Insul 25, 3 (2018). https://doi.org/10.1109/tdei.2018.006942

    Article  CAS  Google Scholar 

  33. Y.L. Zhang, W.L. Li, Z.Y. Wang, Y.L. Qiao, H.T. Xia, R.X. Song, Y. Zhao, W.D. Fei, ACS Appl. Mater. Interfaces. 11, 41 (2019). https://doi.org/10.1021/acsami.9b14815

    Article  CAS  Google Scholar 

  34. Y. Cui, T.D. Zhang, Y. Feng, C.H. Zhang, Q.G. Chi, Y.Q. Zhang, Q.G. Chen, X. Wang, Q.Q. Lei, Compos. Part. B Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.107429

    Article  Google Scholar 

  35. L.Y. Yu, S. Vudayagiri, L.A. Jensen, A.L. Skov, Int. J. Smart Nano Mater. 11, 2 (2020). https://doi.org/10.1080/19475411.2020.1768605

    Article  Google Scholar 

  36. X.Y. Huang, K.Q. Quan, P.K. Jiang, P. Wei, G.L. Wang, Chin. Polym. Bull. (2006). https://doi.org/10.1109/INFOCOM.2006.241

    Article  Google Scholar 

  37. T. Kusunose, T. Sekino, H.C. Yong, K. Niihara, J. Am. Ceram. Soc. (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00514.x

    Article  Google Scholar 

  38. D. Lee, S.H. Song, J. Hwang, S.H. Jin, K.H. Park, B.H. Kim, S.H. Hong, S. Jeon. Small. 9, 15 (2013). https://doi.org/10.1002/smll.201203214

    Article  CAS  Google Scholar 

  39. W.Y. Zhou, J. Zuo, X.Q. Zhang, A.N. Zhou, J. Compos. Mater. 48, 20 (2014). https://doi.org/10.1177/0021998313499953

    Article  CAS  Google Scholar 

  40. T. Zhou, M.K. Smith, J.P. Berenguer, T.J. Quill, B.A. Cola, K. Kalaitzidou, T.L. Bougher, J. Appl. Polym. Sci. 137, 19 (2020). https://doi.org/10.1002/app.48661

    Article  CAS  Google Scholar 

  41. A.S. Abdel-Rahman, Int. J. Comput. Methods Eng. Sci. Mech. 24, 2 (2023). https://doi.org/10.1080/15502287.2022.2113184

    Article  Google Scholar 

  42. T. Hirai, D.E. Kline, J. Compos. Mater. 7, 2 (1973). https://doi.org/10.1177/002199837300700202

    Article  Google Scholar 

  43. S.N. Goyanes, P.G. König, J.D. Marconi, J. Appl. Polym. Sci. 88, 4 (2003). https://doi.org/10.1002/app.11678

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Tiandong Zhang acknowledges the support from the China Scholarship Council (CSC).

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 52277024, U20A20308, 51977050), Heilongjiang Provincial Natural Science Foundation of China (No. ZD2020E009), China Postdoctoral Science Foundation (Nos. 2021T140166, 2018M640303), Heilongjiang Province Postdoctoral Science Foundation (No. LBH-Z18099), Fundamental Research for Universities of Heilongjiang Province (Nos. 2019-KYYWF-0208, 2018-KYYWF-1625), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang (No. UNPYSCT-2020178).

Author information

Authors and Affiliations

Authors

Contributions

Q.G. Chi conceived and supervised the project. T.D. Zhang and C.H. Zhang conceived the idea and designed the experiment. H.D. Xu performed the synthesis and preparation work. T.D. Zhang and H.D. Xu fabricated the characterization and discussed the results. Y.Q. Zhang and H.D. Xu performed the property measurement and conducted the electrical simulation. All authors contributed to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Qingguo Chi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Xu, H., Zhang, C. et al. Investigation of electrical and mechanical properties of silicon carbide whisker-hexagonal boron nitride/ethylene propylene diene monomer composites. J Mater Sci: Mater Electron 34, 1451 (2023). https://doi.org/10.1007/s10854-023-10826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10826-8

Navigation