Skip to main content

Advertisement

Log in

Effect of chromium (Cr)-doping on electrochemical performance of microwave synthesized hematite (α-CrxFe2−xO3) nanosheets for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal ion-doped transition metal oxides have been proposed as new electrode materials for developing high-performance energy storage devices. For supercapacitor applications, novel Chromium-doped iron oxide (Cr-doped α-Fe2O3) with sheet like morphology were fabricated by utilizing the Microwave route. The Cr-doped α-Fe2O3 nanosheets provided a large reaction area and fast electron transport which are desired for improving the electrochemical properties. The electrochemical properties of α-CrxFe2−xO3 (x = 0, 0.03, 0.06) electrodes were comprehensively studied using Cyclic voltammetry (CV), Galvanostatic Charging and discharging profiles and electrochemical impedance Spectroscopy in 3 M KOH electrolyte solution within a potential window of − 0.2 to 0.55 V. The 6% Cr-doped Hematite exhibited maximum redox activity because of its larger surface area and offered a specific capacitance of 1243 Fg−1 at a scan rate of 5 mVs−1 greater than pure α-Fe2O3 nanostructures. In addition, the 6% Cr doped sample showed less cyclic fatigue with 95.8% capacitance retention after 5000 CV cycles and a better conductivity with a resistance of only 2.57 Ω. Finally, an asymmetric Supercapacitor was designed, which showed a high energy density of 28.803 Wh Kg− 1 at a power density of 586.68 WKg−1 and a good cyclic stability. The findings demonstrate that Cr-doped Hematite as electrode materials have potential application for high performance supercapacitors and may provide real solutions to the energy crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Springer, Cham, 2013)

    Google Scholar 

  2. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)

    Article  CAS  Google Scholar 

  3. H. Quan, B. Cheng, Y. Xiao, S. Lei, One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016)

    Article  CAS  Google Scholar 

  4. D. Wang, Y. Li, Q. Wang, T. Wang, Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J. Solid State Electrochem. 16(6), 2095–2102 (2012)

    Article  CAS  Google Scholar 

  5. A.A. Yadav, T.B. Deshmukh, R.V. Deshmukh, D.D. Patil, U.J. Chavan, Electrochemical supercapacitive performance of Hematite α-Fe2O3 thin films prepared by spray pyrolysis from non-aqueous medium. Thin Solid Films. 616, 351–358 (2016)

    Article  CAS  Google Scholar 

  6. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U.U. De Gomes, M.J.C.I. Maaza, Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon up conversion materials. Ceram. Int 42(7), 8385–8394 (2016)

    Article  CAS  Google Scholar 

  7. C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6(12), 2690–2695 (2006)

    Article  CAS  Google Scholar 

  8. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric super capacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011)

    Article  CAS  Google Scholar 

  9. B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Huh, 3D microporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano. 6, 4020–4028 (2012)

    Article  CAS  Google Scholar 

  10. L. Deng, G. Zhang, L. Kang, Z. Lei, C. Liu, Z.H. Liu, Graphene/VO2 hybrid material for high performance electrochemical capacitor. Electrochim. Acta. 112, 448–457 (2013)

    Article  CAS  Google Scholar 

  11. F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, Electrode materials for aqueous asymmetric supercapacitors. RSC Adv. 3(32), 13059–13084 (2013)

    Article  CAS  Google Scholar 

  12. Q. Qu, Y. Zhu, X. Gao, Y. Wu, Core–shell structure of polypyrrole grown on V2O5 nanoribbon as high-performance anode material for supercapacitors. Adv. Energy Mater. 2(8), 950–955 (2012)

    Article  CAS  Google Scholar 

  13. H. Xia, Y.S. Meng, G. Yuan, C. Cui, L. Lu, A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem. Solid-State Lett. 15(4), A60 (2012)

    Article  CAS  Google Scholar 

  14. D. Yuan, J. Zeng, N. Kristian, Y. Wang, X. Wang, Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. Electrochem. Commun. 11(2), 313–317 (2009)

    Article  CAS  Google Scholar 

  15. G. Mummoorthi, S. Shajahan, M. Abu Haija, U. Mahalingam, R. Rajendran, Synthesis and characterization of Ternary α-Fe2O3/NiO/rGO composite for high-performance supercapacitors. ACS Omega. 7(31), 27390–27399 (2022)

    Article  CAS  Google Scholar 

  16. K.K. Lee, S. Deng, H.M. Fan, S. Mhaisalkar, H.R. Tan, E.S. Tok et al., α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale. 4(9), 2958–2961 (2012)

    Article  CAS  Google Scholar 

  17. H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin, M. Zheng, S.M. Aldoshin, Facile synthesis of hematite quantum-dot/functionalized graphene‐sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 25(4), 627–635 (2015)

    Article  CAS  Google Scholar 

  18. S. Shivakumara, T.R. Penki, N. Munichandraiah, High specific surface area α-Fe2O3 nanostructures as high-performance electrode material for supercapacitors. Mater. Lett. 131, 100–103 (2014)

    Article  CAS  Google Scholar 

  19. J. Chen, K. Huang, S. Liu, Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim. Acta. 55(1), 1–5 (2009)

    Article  CAS  Google Scholar 

  20. R. Li, X. Ren, F. Zhang, C. Du, J. Liu, Synthesis of Fe3O4@SnO2 core–shell nanorod film and its application as a thin-film supercapacitor electrode. Chem. Commun. 48(41), 5010–5012 (2012)

    Article  CAS  Google Scholar 

  21. P.M. Hallam, M. Gómez-Mingot, D.K. Kampouris, C.E. Banks, Facile synthetic fabrication of iron oxide particles and novel hydrogen superoxide supercapacitors. RSC Adv. 2(16), 6672–6679 (2012)

    Article  CAS  Google Scholar 

  22. M. Zhu, Y. Wang, D. Meng, X. Qin, G. Diao, Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J. Phys. Chem. C 116(30), 16276–16285 (2012)

    Article  CAS  Google Scholar 

  23. D. Sarkar, M. Mandal, K. Mandal, Design and synthesis of high performance multifunctional ultrathin hematite nanoribbons. ACS Appl. Mater. Interfaces. 5(22), 11995–12004 (2013)

    Article  CAS  Google Scholar 

  24. A. De Adhikari, R. Oraon, S.K. Tiwari, P. Saren, C.K. Maity, J.H. Lee et al., Zn-doped SnO2 nano-urchin-enriched 3D carbonaceous framework for supercapacitor application. New J. Chem 42(2), 955–963 (2018)

    Article  CAS  Google Scholar 

  25. P. Asen, M. Haghighi, S. Shahrokhian, N. Taghavinia, One step synthesis of SnS2-SnO2 nano-heterostructured as an electrode material for supercapacitor applications. J. Alloys Compd. 782, 38–50 (2019)

    Article  CAS  Google Scholar 

  26. P. Anjali, R. Vani, T.S. Sonia, A.S. Nair, S. Ramakrishna, R. Ranjusha et al., Cerium doped NiO nanoparticles: a novel electrode material for high performance pseudocapacitor applications. Sci. Adv. Mater. 6(1), 94–101 (2014)

    Article  CAS  Google Scholar 

  27. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(5), 751–767 (1976)

    Article  Google Scholar 

  28. Z. Landolsi, I.B. Assaker, R. Chtourou, S. Ammar, Photoelectrochemical impedance spectroscopy of electrodeposited hematite α-Fe2O3 thin films: effect of cycle numbers. J. Mater. Sci. 29, 8176–8187 (2018)

    CAS  Google Scholar 

  29. D. Trpkov, M. Panjan, L. Kopanja, M. Tadić, Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube-and sphere-like superstructures. Appl. Surf. Sci. 457, 427–438 (2018)

    Article  CAS  Google Scholar 

  30. S. Musić, S. Popović, M. Ristić, Chemical and structural properties of the system Fe2O3-Cr2O3. J. Mater. Sci. 28(3), 632–638 (1993)

    Article  Google Scholar 

  31. S. Musić, M. Lenglet, S. Popović, B. Hannoyer, I. Czakó-Nagy, M. Ristić, F. Gashi, Formation and characterization of the solid solutions (CrxFe1– x) 2O3, 0≤x≤1. J. Mater. Sci. 31(15), 4067–4076 (1996)

    Article  Google Scholar 

  32. H. Zhang, J.H. Park, W.J. Byun, M.H. Song, J.S. Lee, Activating the surface and bulk of hematite photoanodes to improve solar water splitting. Chem. Sci. 10(44), 10436–10444 (2019)

    Article  CAS  Google Scholar 

  33. S. Shen, J. Jiang, P. Guo, C.X. Kronawitter, S.S. Mao, L. Guo, Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes. Nano Energy. 1(5), 732–741 (2012)

    Article  CAS  Google Scholar 

  34. X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, Y. Tong, Oxygen-deficient hematite nanorods as high‐performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26(19), 3148–3155 (2014)

    Article  CAS  Google Scholar 

  35. X. Zhao, J. Feng, S. Chen, Y. Huang, T.C. Sum, Z. Chen, New insight into the roles of oxygen vacancies in hematite for solar water splitting. Phys. Chem. Chem. Phys. 19(2), 1074–1082 (2017)

    Article  CAS  Google Scholar 

  36. X. Zheng, X. Yan, Y. Sun, Y. Yu, G. Zhang, Y. Shen, Y. Zhang, Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. J. Colloid Interface Sci. 466, 291–296 (2016)

    Article  CAS  Google Scholar 

  37. P.M. Padwal, S.L. Kadam, S.M. Mane, S.B. Kulkarni, Enhanced specific capacitance and supercapacitive properties of polyaniline–iron oxide (PANI–Fe2O3) composite electrode material. J. Mater. Sci. 51(23), 10499–10505 (2016)

    Article  CAS  Google Scholar 

  38. H. Wu, Y. Li, B. Song, Q. Li, Facile synthesis of porous waist drum-like α-Fe2O3 nanocrystals as electrode materials for supercapacitor application. J. Mater. Sci. 32(14), 18777–18789 (2021)

    CAS  Google Scholar 

  39. Z. Zhang, H. Wang, Y. Zhang, B. Huang, J. Du, E. Xie et al., Carbon nanotube/hematite core/shell nanowires on carbon cloth for supercapacitor anode with ultrahigh specific capacitance and superb cycling stability. Chem. Eng. J. 325, 221–228 (2017)

    Article  CAS  Google Scholar 

  40. S.A. Kadam, Y.R. Ma, Y.R. Chen, Y.H. Navale, A.S. Salunkhe, V.B. Patil et al., Mn-incorporated α-Fe2O3 nanostructured thin films: facile synthesis and application as a high-performance supercapacitor. J. Electron. Mater. 52(1), 500–513 (2023)

    Article  CAS  Google Scholar 

  41. D.M.G.T. Nathan, S.J.M. Boby, Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. J. Alloys Compd. 700, 67–74 (2017)

    Article  CAS  Google Scholar 

  42. A. Gupta, S. Sardana, J. Dalal, S. Lather, A.S. Maan, R. Tripathi, A. Ohlan, Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material. ACS Appl. Energy Mater. 3(7), 6434–6446 (2020)

    Article  CAS  Google Scholar 

  43. X. Xu, C. Cao, Y. Zhu, Facile synthesis of single crystalline mesoporous hematite nanorods with enhanced supercapacitive performance. Electrochim. Acta. 155, 257–262 (2015)

    Article  CAS  Google Scholar 

  44. F. Ali, N.R. Khalid, G. Nabi, A. Ul-Hamid, M. Ikram, Hydrothermal synthesis of cerium‐doped Co3O4 nanoflakes as electrode for supercapacitor application. Int. J. Energy Res. 45(2), 1999–2010 (2021)

    Article  CAS  Google Scholar 

  45. Y. Li, H. Zhang, S. Wang, Y. Lin, Y. Chen, Z. Shi, Z. Guo, Facile low-temperature synthesis of Hematite quantum dots anchored on a three-dimensional ultra-porous graphene-like framework as advanced anode materials for asymmetric supercapacitors. J. Mater. Chem. A 4(29), 11247–11255 (2016)

    Article  CAS  Google Scholar 

  46. G. Kim, J. Kang, G. Choe, S. Yim, Enhanced energy density of supercapacitors using hybrid electrodes based on Fe2O3 and MnO2 nanoparticles. Int. J. Electrochem. Sci. 12, 10015–10022 (2017)

    Article  CAS  Google Scholar 

  47. A.K. Singh, K. Mandal, Engineering of high-performance supercapacitor electrode based on Fe-Ni/Fe2O3-NiO core/shell hybrid nanostructures. J. Appl. Phys. 117, 105101 (2015)

    Article  Google Scholar 

  48. S.S. Raut, B.R. Sankapal, Comparative studies on MWCNTs, Fe2O3 and Fe2O3/MWCNTs thin films towards super capacitor application. New. J. Chem. 40, 2619–2627 (2016)

    Article  CAS  Google Scholar 

  49. A.M. Khattak, H. Yin, Z.A. Ghazi, B. Liang, A. Iqbal, N.A. Khan, Y. Gao, L. Li, Z. Tang, Three-dimensional iron oxide/graphene aerogel hybrids as all-solid-state flexible supercapacitor electrodes. RSC Adv. 6, 58994–59000 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Science and Technology, New Delhi, for financial support to establish the Special Laboratory for Multifunctional Nanomaterials and the Ministry of Education for fellowship.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MA, II and AS: conceptualization, methodology, data curation, and writing original draft. AMT: formal analysis and investigation. BW: writing-review and editing. MAS: validation and supervision.

Corresponding authors

Correspondence to Ab Mateen Tantray or Aamir Sohail.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aalim, M., Irshad, I., Tantray, A.M. et al. Effect of chromium (Cr)-doping on electrochemical performance of microwave synthesized hematite (α-CrxFe2−xO3) nanosheets for supercapacitor application. J Mater Sci: Mater Electron 34, 1409 (2023). https://doi.org/10.1007/s10854-023-10825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10825-9

Navigation