Skip to main content

Advertisement

Log in

Structural optical and morphological analysis of a new lead-free perovskite (2-4-FPEA)\(_2\)CuCl\(_4\) and confirmation of resistance-switching behavior

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hybrid organic–inorganic halide perovskites are well-known energy storage and harvesting materials. Its applications in brand-new industries are frequently highlighted. The two main issues holding back the development of these perovskites are toxicity and stability. A greener durable option is perovskite, which settles into a stable two-dimensional structure and contains copper in the inorganic cation portion. A new organic–inorganic copper halide perovskite with a direct band gap and two-dimensional Ruddlesden-Popper phase was synthesized as part of the current work. Its structural and morphological characteristics were examined. We inspected the resistance-switching behavior of this material in addition to their structural study since it is crucial for their application in resistive random access memory. The perovskite films were given electrical connections at the top and bottom to evaluate their resistance-switching behavior. Low SET and RESET voltages of 1.7 V and − 2.06 V were shown in response with an ON-OFF ratio of 10\(^4\) to 10\(^5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. N.-G. Park, Mater. Today (2015). https://doi.org/10.1016/j.mattod.2014.07.007

    Article  Google Scholar 

  2. M.D. Prasad, M.G. Krishna, S.K. Batabyal, ACS Appl. Nano Mater. (2021). https://doi.org/10.1021/acsanm.0c02857

    Article  Google Scholar 

  3. Z. Fan, K. Sun, J.J. Wang, Mater. Chem. A (2015). https://doi.org/10.1039/C5TA04235F

    Article  Google Scholar 

  4. D.B. Mitzi, J. Chem. Soc. Dalton Trans. (2001). https://doi.org/10.1039/B007070J

    Article  Google Scholar 

  5. A. Maqsood, Y. Li, J. Meng, D. Song, B. Qiao, S. Zhao, Z. Xu, Nanoscale Res. Lett. (2020). https://doi.org/10.1186/s11671-020-03313-0

    Article  Google Scholar 

  6. X. Wang, T. Zhang, Y. Lou, Y. Zhao, Mater. Chem. Front. (2019). https://doi.org/10.1039/C8QM00611C

    Article  Google Scholar 

  7. A.K. Pathak, S.K. Batabyal, J. Electron. Mater. (2021). https://doi.org/10.1007/s11664-021-09100-6

    Article  Google Scholar 

  8. B., Mydhili, A., Albert, C. Sreekala, In: J. Phys. Conf. Ser., p. 012044 (2023). https://doi.org/10.1088/1742-6596/2426/1/012044

  9. A.F. Demirors, A. Imhof, Chem. Mater. (2009). https://doi.org/10.1021/cm900693r

    Article  Google Scholar 

  10. S. Dhanya, J. Satapathy, J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-09878-7

    Article  Google Scholar 

  11. Y. Bai, T. Siponkoski, J. Peräntie, H. Jantunen, J. Juuti, Appl. Phys. Lett (2017). https://doi.org/10.1063/1.4974735

    Article  Google Scholar 

  12. S. Bhattacharjee, R. Sarkar, P. Chattopadhyay, A. Banerjee, N.S. Das, D. Das, K.K. Chattopadhyay, Appl. Phys. A (2022). https://doi.org/10.1007/s00339-022-05638-2

    Article  Google Scholar 

  13. W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Energy Environ. Sci. (2019). https://doi.org/10.1039/C8EE01574K

    Article  Google Scholar 

  14. X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, Small (2017). https://doi.org/10.1002/smll.201603996

    Article  Google Scholar 

  15. C. Ritter, M. Ibarra, L. Morellon, J. Blasco, J. Garcia, J.J. De Teresa, Condens. Matter Phys. (2000). https://doi.org/10.1088/0953-8984/12/38/306

    Article  Google Scholar 

  16. A. Younis, C.-H. Lin, X. Guan, S. Shahrokhi, C.-Y. Huang, Y. Wang, T. He, S. Singh, L. Hu, J.R.D. Retamal, Adv. Mater. (2021). https://doi.org/10.1002/adma.202005000

    Article  Google Scholar 

  17. K. Wang, J.Y. Park, L. Dou, EcoMat (2021). https://doi.org/10.1002/eom2.12104

    Article  Google Scholar 

  18. A. Jodlowski, D. Rodríguez-Padrón, R. Luque, G. Miguel, Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201703120

    Article  Google Scholar 

  19. T.L. Leung, I. Ahmad, A.A. Syed, A.M.C. Ng, J. Popović, A.B. Djurišić, Commun. Mater. (2022). https://doi.org/10.1038/s43246-022-00285-9

    Article  Google Scholar 

  20. Z. Xiao, Z. Song, Y. Yan, Adv. Mater. (2019). https://doi.org/10.1002/adma.201803792

    Article  Google Scholar 

  21. X. Zhao, G. Niu, J. Zhu, B. Yang, J.-H. Yuan, S. Li, W. Gao, Q. Hu, L. Yin, K.-H. Xue, J. Phys. Chem. Lett. (2020). https://doi.org/10.1021/acs.jpclett.0c00161

    Article  Google Scholar 

  22. H. Xiang, P. Liu, R. Ran, W. Wang, W. Zhou, Z. Shao, Renew. Sust. Energ. Rev. (2022). https://doi.org/10.1016/j.rser.2022.112614

    Article  Google Scholar 

  23. L. Septiany, G.R. Blake, J. Magn. Magn. Mater. (2022). https://doi.org/10.1016/j.jmmm.2021.168598

    Article  Google Scholar 

  24. X. Li, J.M. Hoffman, M.G. Kanatzidis, Chem. Rev. (2021). https://doi.org/10.1021/acs.chemrev.0c01006

    Article  Google Scholar 

  25. P. Chen, Y. Bai, S. Wang, M. Lyu, J.-H. Yun, L. Wang, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201706923

    Article  Google Scholar 

  26. Y. Li, Z. Zhou, N. Tewari, M. Ng, P. Geng, D. Chen, P.K. Ko, M. Qammar, L. Guo, J.E. Halpert, Mater. Chem. Front. (2021). https://doi.org/10.1039/D1QM00288K

    Article  Google Scholar 

  27. C. Han, A.J. Bradford, A.M. Slawin, B.E. Bode, E. Fusco, S.L. Lee, C.C. Tang, P. Lightfoot, Inorg. Chem. (2021). https://doi.org/10.1021/acs.inorgchem.1c00705

    Article  Google Scholar 

  28. A. Albert, C. Sreekala, J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09317-z

    Article  Google Scholar 

  29. K. Kang, W. Niu, Y. Zhang, A. Li, X. Zou, W. Hu, J. Phys. Chem. Lett. (2023). https://doi.org/10.1021/acs.jpclett.2c03676

    Article  Google Scholar 

  30. A.M. Elseman, A.E. Shalan, S. Sajid, M.M. Rashad, A.M. Hassan, M. Li, ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b00495

    Article  Google Scholar 

  31. K. Kang, W. Hu, X. Tang, J. Phys. Chem. Lett. (2021). https://doi.org/10.1021/acs.jpclett.1c03408

    Article  Google Scholar 

  32. B. Li, W. Hui, X. Ran, Y. Xia, F. Xia, L. Chao, Y. Chen, W.J. Huang, Mater. Chem. C (2019). https://doi.org/10.1039/C9TC02233C

    Article  Google Scholar 

  33. B. Hwang, C. Gu, D. Lee, J.-S. Lee, Sci. Rep. (2017). https://doi.org/10.1038/srep43794

    Article  Google Scholar 

  34. S. Lee, S. Wolfe, J. Torres, M. Yun, J.-K. Lee, ACS Appl. Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c06278

    Article  Google Scholar 

  35. E.J. Yoo, M. Lyu, J.-H. Yun, C.J. Kang, Y.J. Choi, L. Wang, Adv. Mater. (2015). https://doi.org/10.1002/adma.201502889

    Article  Google Scholar 

  36. K. Yan, M. Peng, X. Yu, X. Cai, S. Chen, H. Hu, B. Chen, X. Gao, B. Dong, D.J. Zou, Mater. Chem. C (2016). https://doi.org/10.1039/C6TC00141F

    Article  Google Scholar 

  37. J.-Y. Seo, J. Choi, H.-S. Kim, J. Kim, J.-M. Yang, C. Cuhadar, J.S. Han, S.-J. Kim, D. Lee, H.W. Jang, Nanoscale (2017). https://doi.org/10.1039/C7NR05582J

    Article  Google Scholar 

  38. J.-M. Yang, S.-G. Kim, J.-Y. Seo, C. Cuhadar, D.-Y. Son, D. Lee, N.-G. Park, Adv. Electron. Mater. (2018). https://doi.org/10.1002/aelm.201800190

    Article  Google Scholar 

  39. S.-Y. Kim, J.-M. Yang, E.-S. Choi, N.-G. Park, Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202002653

    Article  Google Scholar 

  40. A. Elattar, H. Suzuki, R. Mishima, K. Nakao, H. Ota, T. Nishikawa, H. Inoue, A.K.K. Kyaw, Y.J. Hayashi, Mater. Chem. C (2021). https://doi.org/10.1039/D0TC04307A

    Article  Google Scholar 

  41. Q. Gao, J. Qi, K. Chen, M. Xia, Y. Hu, A. Mei, H. Han, Adv. Mater. (2022). https://doi.org/10.1002/adma.202200720

    Article  Google Scholar 

  42. J. Di, J. Chang, S. Liu, EcoMat (2020). https://doi.org/10.1002/eom2.12036

    Article  Google Scholar 

  43. W. Gamal, A.A. El-Bassuony, H. Abdelsalam, Polym. Bull. (2023). https://doi.org/10.1007/s00289-023-04788-4

    Article  Google Scholar 

  44. A.A. El-Bassuony, H. Abdelsalam, Phys. Scr. (2023). https://doi.org/10.1088/1402-4896/acc90c

    Article  Google Scholar 

  45. S. Maheshwari, T.J. Savenije, N. Renaud, F.C. Grozema, J. Phys. Chem. C (2018). https://doi.org/10.1021/acs.jpcc.8b05715

    Article  Google Scholar 

  46. H. Chen, J. Lin, J. Kang, Q. Kong, D. Lu, J. Kang, M. Lai, L.N. Quan, Z. Lin, J. Jin, Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aay4045

    Article  Google Scholar 

  47. S. Ruddlesden, P. Popper, Acta Crystallogr. (1958). https://doi.org/10.1107/S0365110X58000128

    Article  Google Scholar 

  48. L. Lohr Jr., Proc. Natl. Acad. Sci. USA (1968). https://doi.org/10.1073/pnas.59.3.720

    Article  Google Scholar 

  49. S. Khodaparast, F. Boulogne, C. Poulard, H.A. Stone, Phys. Rev. Lett. (2017). https://doi.org/10.1103/PhysRevLett.119.154502

    Article  Google Scholar 

  50. P. Mehdizadeh, M. Jamdar, M.A. Mahdi, W.K. Abdulsahib, L.S. Jasim, S.R. Yousefi, M. Salavati-Niasari, Arab. J. Chem. (2023). https://doi.org/10.1016/j.arabjc.2023.104579

    Article  Google Scholar 

  51. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  Google Scholar 

  52. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  Google Scholar 

  53. A., Albert, N., Sreelekshmi, I., Jinchu, K., Sreelatha, C. Sreekala, In: AIP Conf. Proc., p. 020122 (2019). https://doi.org/10.1063/1.5130332

  54. S. Bhattacharjee, N. Mazumder, S. Mondal, K. Panigrahi, A. Banerjee, D. Das, S. Sarkar, D. Roy, K.K. Chattopadhyay, Dalton Trans. (2020). https://doi.org/10.1039/D0DT01167C

    Article  Google Scholar 

  55. Y. Zhang, R. Wang, Y. Li, Z. Wang, S. Hu, X. Yan, Y. Zhai, C. Zhang, C. Sheng, J. Phys. Chem. Lett. (2018). https://doi.org/10.1021/acs.jpclett.8b03458

    Article  Google Scholar 

  56. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  Google Scholar 

  57. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  Google Scholar 

  58. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, RSC Adv. (2021). https://doi.org/10.1039/D0RA10288A

    Article  Google Scholar 

  59. W., Li, J.-e., Qu, Z., Cao, H. Wang, Coatings (2020) https://www.mdpi.com/2079-6412/10/6/598

  60. M. Mikikian, M. Cavarroc, L. Couëdel, Y. Tessier, L. Boufendi, Pure Appl. Chem. (2010). https://doi.org/10.1351/PAC-CON-09-10-30

    Article  Google Scholar 

  61. J. Li, J. Ma, X. Cheng, Z. Liu, Y. Chen, D. Li, Acs Nano (2020). https://doi.org/10.1021/acsnano.9b08975

    Article  Google Scholar 

  62. D.B. Straus, C.R. Kagan, J. Phys. Chem. Lett. (2018). https://doi.org/10.1021/acs.jpclett.8b00201

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the Indian Nanoelectronics User’s Programme - Idea to Innovation (INUP-i2i), which is supported by the Ministry of Electronics and Information Technology (MeitY), for allowing us to use SEM, non-contact profilometer, and semiconducting parameter analyzer facilities at the Centre for Nanoelectromechanical Systems and Nanophotonics (CNNP) at IIT Madras.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The study’s conception and design were influenced by both authors. AA handled the material preparation, data collecting, and analysis. AA wrote the initial draught of the work. The final document was read by both writers before being approved.

Corresponding author

Correspondence to C. O. Sreekala.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 90 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, A., Sreekala, C.O. Structural optical and morphological analysis of a new lead-free perovskite (2-4-FPEA)\(_2\)CuCl\(_4\) and confirmation of resistance-switching behavior. J Mater Sci: Mater Electron 34, 1418 (2023). https://doi.org/10.1007/s10854-023-10821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10821-z

Navigation