Skip to main content
Log in

Electrically active traps in 4H-silicon carbide (4H-SiC) PiN power diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrically active traps in 4H-silicon carbide (4H-SiC) PiN power diodes are identified by deep-level transient Fourier spectroscopy (DLTFS). The junction termination extension (JTE) and floating JTE rings (periphery protections) are realized using the Al+ ion-implantation process in the PiN diode structure, to mitigate the electric field crowding at the junction edges and obtain the theoretically projected off-state performance. The 4H-SiC PiN diode exhibits forward voltage drop of ~ 2.6 V at 1 mA, ideality factor of ~ 1.6, series resistance of ~ 1.2 Ω, low reverse leakage current < 0.5 nA at 200 V, blocking voltage > 200 V, built-in barrier potential of ~ 2.1 V, and effective doping concentration for the drift layer of ~ 7.9 × 1014 cm−3. The temperature-induced changes in the forward IV characteristics are investigated from 25 to 150 °C. From the DLTFS results, three hole traps H1 at EV + 0.16 eV, H2 at EV + 0.3 eV, and H3 at EV + 0.63 eV, and two electron traps E1 at EC − 0.19 eV and E2 at EC − 0.67 eV are identified in the 4H-SiC PiN diodes. The current-mode DLTFS (I-DLTFS) and thermally stimulated capacitance (TSCAP) spectroscopy measurements are also carried out to acquire further information about the traps in the 4H-SiC PiN diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets analysed during this study are available from the corresponding author upon reasonable request.

References

  1. SiC Power Devices and Modules Application Note Rev.003 (ROHM Semiconductor, 2020), https://fscdn.rohm.com/en/products/databook/applinote/discrete/sic/common/sic_appli-e.pdf. Accessed on 13 February 2023.

  2. K.P. Schoen, J.M. Woodall, J.A. Cooper, M.R. Melloch, IEEE Trans. Electron Devices 45, 1595 (1998)

    Article  CAS  Google Scholar 

  3. B.J. Baliga, Fundamentals of power semiconductor devices, 2nd edn. (Springer, Switzerland, 2019)

    Book  Google Scholar 

  4. CoolSiC™ Automotive Discrete Schottky Diodes (Infineon Technologies, 2019) https://www.infineon.com/dgdl/Infineon-AN2018-07_CoolSiC_Automotive_Diode-ApplicationNotes-v01_10-EN.pdf?fileId=5546d462689a790c0168c264c1d554d3. Accessed on 13 February 2023.

  5. P.V. Raja, N.V.L.N. Murty, J. Appl. Phys. 123, 161536 (2018)

    Article  Google Scholar 

  6. SiC Schottky Barrier Diodes Application Note (Toshiba, 2019). https://toshiba.semicon-storage.com/info/application_note_en_20190404_AKX00463.pdf?did=65325. Accessed on 13 February 2023.

  7. B. Asllani, H. Morel, L.V. Phung, D. Planson, Energies 12, 4566 (2019)

    Article  CAS  Google Scholar 

  8. B. Asllani, D. Planson, P. Bevilacqua, J.B. Fonder, B. Choucoutou, H. Morel, L.V. Phung, Mater. Sci. Forum 963, 567 (2019)

    Article  Google Scholar 

  9. J.W. Kleppinger, S.K. Chaudhuri, O. Karadavut, K.C. Mandal, Appl. Phys. Lett. 119, 063502 (2021)

    Article  CAS  Google Scholar 

  10. M.L. Megherbi, F. Pezzimenti, L. Dehimi, M.A. Saadoune, F.G.D. Corte, IEEE Trans. Electron Devices 65, 3371 (2018)

    Article  CAS  Google Scholar 

  11. H.M. Ayedh, M. Puzzanghera, B.G. Svensson, R. Nipoti, Mater. Sci. Forum 897, 279 (2017)

    Article  Google Scholar 

  12. G. Sozzi, M. Puzzanghera, R. Menozzi, R. Nipoti, IEEE Trans. Electron Devices 66, 3028 (2019)

    Article  CAS  Google Scholar 

  13. X. Zhou, G. Pandey, R. Ghandi, P.A. Losee, A. Bolotnikov, T.P. Chow, Mater. Sci. Forum 963, 516 (2019)

    Article  Google Scholar 

  14. P. Hazdra, S. Popelka, Mater. Sci. Forum 897, 463 (2017)

    Article  Google Scholar 

  15. P. Hazdra, S. Popelka, A. Schöner, Mater. Sci. Forum 924, 436 (2018)

    Article  Google Scholar 

  16. G. Alfieri, A. Mihaila, R. Nipoti, M. Puzzanghera, G. Sozzi, P. Godignon, J. Millán, Mater. Sci. Forum 897, 246 (2017)

    Article  Google Scholar 

  17. S. Weiss, R. Kassing, Solid State Electron. 31, 1733 (1988)

    Article  CAS  Google Scholar 

  18. P.V. Raja, C. Raynaud, C. Sonneville, H. Morel, L.V. Phung, T.H. Ngo, P.D. Mierry, E. Frayssinet, H. Maher, Y. Cordier, D. Planson, Micro and Nanostructures 172, 207433 (2022)

    Article  CAS  Google Scholar 

  19. PhysTech FT-1030, DLTFS Manual, PhysTech GmbH, Am Mühlbachbogen 55d, D-85368 Moosburg, Germany (2014).

  20. L. Stuchlikova, R. Ravasz, J. Drobny, A. Kosa, P. Benko, J. Kovac, S. L. Delage, IEEE 12th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM) 1–4, Slovakia (2018).

  21. P. Dong, Y. Qin, X. Yu, X. Xu, Z. Chen, L. Li, Y. Cui, IEEE Access 7, 170385 (2019)

    Article  Google Scholar 

  22. A. Brovko, O. Amzallag, A. Adelberg, L. Chernyak, P.V. Raja, A. Ruzin, Nucl. Instrum. Methods Phys. Res. A 1004, 165343 (2021)

    Article  CAS  Google Scholar 

  23. G.L. Miller, D.V. Lang, L.C. Kimerling, Annu. Rev. Mater. Sci. 7, 377 (1977)

    Article  CAS  Google Scholar 

  24. B. G. Streetman, S. J. Banerjee, Solid State Electronic Devices, 6 edn. (PHI Learning, New Delhi, 2016).

  25. T. Kimoto, J.A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices, and applications, 1st edn. (Wiley, Singapore, 2014)

    Book  Google Scholar 

  26. N. Camara, E. Bano, K. Zekentes, Mater. Sci. Forum 457, 1017 (2004)

    Article  Google Scholar 

  27. J. Ren, D. Yan, G. Yang, F. Wang, S. Xiao, X. Gu, J. Appl. Phys. 117, 154503 (2015)

    Article  Google Scholar 

  28. D. Yan, J. Jiao, J. Ren, G. Yang, X. Gu, J. Appl. Phys. 114, 144511 (2013)

    Article  Google Scholar 

  29. P.V. Raja, M. Bouslama, S. Sarkar, K.R. Pandurang, J.-C. Nallatamby, N. DasGupta, A. Dasgupta, IEEE Trans. Electron Devices 67, 2304 (2020)

    Article  CAS  Google Scholar 

  30. J. Zhang, L. Storasta, J.P. Bergman, N.T. Son, E. Janzén, J. Appl. Phys. 93, 4708 (2003)

    Article  CAS  Google Scholar 

  31. A.A. Lebedev, Semiconductors 33, 107 (1999)

    Article  CAS  Google Scholar 

  32. K. Danno, T. Kimoto, J. Appl. Phys. 101, 103704 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The results presented in this paper were attained during P. Vigneshwara Raja’s postdoc with Laboratoire Ampère, INSA Lyon, France; the author would like to thank the Ampere Lab team members for their help and support during his postdoc.

Funding

P. Vigneshwara Raja’s postdoctoral research work was financially supported by the IPCEI (Important Projects of Common European Interest) on Microelectronics/Nano 2022.

Author information

Authors and Affiliations

Authors

Contributions

The author contributions to this manuscript are given as follows: PVR: conceptualization, data curation, formal analysis, investigation, writing—original draft, writing—review and editing. CR: investigation, methodology, supervision, validation, visualization, project administration. BA: investigation, data curation, investigation, formal analysis, writing—review and editing. HM: investigation; supervision, validation, project administration, writing—review and editing. DP: investigation, methodology, supervision, funding acquisition, project administration, validation, visualization, writing—review & editing.

Corresponding author

Correspondence to P. Vigneshwara Raja.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, P.V., Raynaud, C., Asllani, B. et al. Electrically active traps in 4H-silicon carbide (4H-SiC) PiN power diodes. J Mater Sci: Mater Electron 34, 1383 (2023). https://doi.org/10.1007/s10854-023-10813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10813-z

Navigation