Skip to main content
Log in

Enhanced strain and low hysteresis with good fatigue resistance in barium titanate-based piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to fulfill the demands of high strain and low hysteresis for high-precision displacement actuators, (0.925 − x)BaTiO3xSrTiO3–0.075Ba(Zr0.5Hf0.5)O3 (BT–xST–BZH, 0 ≤ x ≤ 0.30) ceramics are prepared in the study by traditional solid-state method. The rhombohedral–orthorhombic (R–O) phase boundary is constructed at 0.05 ≤ x ≤ 0.10 around room temperature. Due to the coexistence of R and O phases in the R–O phase boundary resulting in small domains and high domain wall density, excellent ferroelectric and strain properties including maximum polarization (Pmax ~ 22.2 µC/cm2), residual polarization (Pr ~ 11.0 µC/cm2) and coercive field (Ec ~ 1.1 kV/cm) and large strain (Smax ~ 0.19%) with low hysteresis (Hys ~ 6.3%) are obtained under 50 kV/cm in BT–0.10ST–BZH ceramic. Under lower excited electric field (E) 30 kV/cm, the excellent strain (Smax ~ 0.16%) and low hysteresis (Hys ~ 8.2%) can also be obtained. Moreover, good fatigue resistance is also achieved in this compound, i.e. both bipolar and unipolar strain degradation are ~ 12.5% and the hysteresis is ~ 9.0% after 106 cycles under an electric field of 40 kV/cm. These characteristics make BT–0.10ST–BZH ceramic likely to be used in high-precision displacement actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in this study are available from the corresponding author on reasonable request.

References

  1. K. Uchino, J. Electroceram. 20, 301–311 (2008)

    Google Scholar 

  2. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, S. Zhang, Nat. Mater. 17, 349–354 (2018)

    CAS  Google Scholar 

  3. T. Zheng, J. Wu, D. Xiao, J. Zhu, Prog. Mater. Sci. 98, 552–624 (2018)

    CAS  Google Scholar 

  4. J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R. 135, 1–57 (2019)

    Google Scholar 

  5. A.J. Bell, O. Deubzer, MRS Bull. 43, 581–587 (2018)

    CAS  Google Scholar 

  6. S.O. Leontsev, R.E. Eitel, Sci. Technol. Adv. Mater. 11, 044302 (2010)

    Google Scholar 

  7. M. Waqar, H. Wu, J. Chen, K. Yao, J. Wang, Adv. Mater. 34, e2106845 (2022)

    Google Scholar 

  8. L. Jin, W. Luo, L. Hou, Y. Tian, Q. Hu, L. Wang, L. Zhang, X. Lu, H. Du, X. Wei, Y. Yan, G. Liu, J. Eur. Ceram. Soc. 39, 295–304 (2019)

    CAS  Google Scholar 

  9. X. Xia, X. Sun, J. Wang, Y. Liu, Y. Lyu, Ceram. Int. 46, 24231–24237 (2020)

    CAS  Google Scholar 

  10. Q. Li, H. Qian, T. Zheng, X. Sun, Y. Liu, Y. Lyu, J. Alloy Compd. 922, 166210 (2022)

    CAS  Google Scholar 

  11. Y. Zhao, J. Du, Z. Xu, Mater. Sci. Eng. B 224, 110–116 (2017)

    CAS  Google Scholar 

  12. X. Zhang, G. Jiang, D. Liu, B. Yang, W. Cao, Ceram. Int. 44, 12869–12876 (2018)

    CAS  Google Scholar 

  13. B. Narayan, J.S. Malhotra, R. Pandey, K. Yaddanapudi, P. Nukala, B. Dkhil, A. Senyshyn, R. Ranjan, Nat. Mater. 17, 427–431 (2018)

    CAS  Google Scholar 

  14. Y. Huang, C. Zhao, J. Wu, Adv. Electron. Mater. 4, 1 (2018)

    Google Scholar 

  15. C. Zhao, H. Wang, J. Xiong, J. Wu, Dalton Trans. 45, 6466–6480 (2016)

    CAS  Google Scholar 

  16. W. Wu, J. Ma, N. Wang, C. Shi, K. Chen, Y. Zhu, M. Chen, B. Wu, J. Alloy Compd. 814, 152240 (2020)

    CAS  Google Scholar 

  17. A.K. Kalyani, K. Brajesh, A. Senyshyn, R. Ranjan, Appl. Phys. Lett. 104, 252906 (2014)

    Google Scholar 

  18. M. Song, X. Sun, Q. Li, H. Qian, Y. Liu, Y. Lyu, Crystals. 11, 555 (2021)

    Google Scholar 

  19. D.S. Keeble, F. Benabdallah, P.A. Thomas, M. Maglione, J. Kreisel, Appl. Phys. Lett. 102, 092903 (2013)

    Google Scholar 

  20. D. Wang, Z. Jiang, B. Yang, S. Zhang, M. Zhang, F. Guo, W. Cao, D. Johnson, J. Am. Ceram. Soc. 97, 3244–3251 (2014)

    CAS  Google Scholar 

  21. K. Chen, J. Ma, J. Wu, C. Shi, B. Wu, J. Mater. Sci.: Mater. Electron. 30, 18336–18341 (2019)

    CAS  Google Scholar 

  22. K. Chen, J. Ma, J. Wu, X. Wang, F. Miao, Y. Huang, C. Shi, W. Wu, B. Wu, J. Mater. Sci.: Mater. Electron. 31, 12292–12300 (2020)

    CAS  Google Scholar 

  23. R.D. Shannon, Acta Cryst. Sect. A 32, 751–767 (1976)

    Google Scholar 

  24. N.W. Kim, H.W. Lee, M. Muneeswaran, M. Kim, D. Kang, M. Ko, W.H. Nam, Y.S. Lim, J. Am. Ceram. Soc. 105, 5751–5763 (2022)

    CAS  Google Scholar 

  25. L. Jin, F. Li, S. Zhang, D.J. Green, J. Am. Ceram. Soc. 97, 1–27 (2014)

    CAS  Google Scholar 

  26. Q. Zhang, W. Cai, Q. Li, R. Gao, G. Chen, X. Deng, Z. Wang, X. Cao, C. Fu, J. Alloy Compd. 794, 542–552 (2019)

    CAS  Google Scholar 

  27. C. Zhao, Y. Huang, J. Wu, InfoMat. 2, 1163–1190 (2020)

    CAS  Google Scholar 

  28. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, J. Rödel, Appl. Phys. Rev. 4, 1–53 (2017)

    Google Scholar 

  29. A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31–52 (2006)

    CAS  Google Scholar 

  30. V.V. Shvartsman, D.C. Lupascu, D.J. Green, J. Am. Ceram. Soc. 95, 1–26 (2012)

    CAS  Google Scholar 

  31. H. Jia, Z. Liang, Z. Li, F. Li, L. Wang, Scr. Mater. 209, 114409 (2022)

    CAS  Google Scholar 

  32. J. Yuan, T. Ruan, Q. Li, Y. Liu, Y. Lyu, Ceram. Int. 48, 26335–26341 (2022)

    CAS  Google Scholar 

  33. D. Zheng, R. Zuo, S. Zhang, J. Am. Ceram. Soc. 98, 3670–3672 (2015)

    CAS  Google Scholar 

  34. Y. Zhang, L. Li, B. Shen, J. Zhai, Dalton Trans. 44, 7797–7802 (2015)

    CAS  Google Scholar 

  35. L. Yu, H. Xi, Z. Yu, Y. Liu, Y. Lyu, Ceram. Int. 45, 14675–14683 (2019)

    Google Scholar 

  36. J. Chen, Y. Wang, Y. Zhang, Y. Yang, R. Jin, J. Eur. Ceram. Soc. 37, 2365–2371 (2017)

    CAS  Google Scholar 

  37. X. Sun, H. Qian, T. Zheng, F. Chen, Y. Liu, Y. Lyu, J. Mater. Chem. C 10, 9628–9635 (2022)

    CAS  Google Scholar 

  38. X. Lv, J. Wu, J. Mater. Chem. C 7, 2037–2048 (2019)

    CAS  Google Scholar 

  39. D. Lupascu, J. Rödel, Adv. Eng. Mater. 7, 882–898 (2005)

    CAS  Google Scholar 

  40. N. Balke, D.C. Lupascu, T. Granzow, J. Rödel, J. Am. Ceram. Soc. 90, 1081–1087 (2007)

    CAS  Google Scholar 

  41. X.J. Lou, J. Wang, Appl. Phys. Lett. 96, 12096 (2010)

    Google Scholar 

  42. Y. Zhang, J. Glaum, M.C. Ehmke, J.E. Blendell, K.J. Bowman, M.J. Hoffman, S. Zhang, J. Am. Ceram. Soc. 99, 174–182 (2016)

    CAS  Google Scholar 

  43. X. Sun, Z. Liu, H. Qian, Y. Liu, Y. Lyu, Ceram. Int. 47, 24207–24217 (2021)

    CAS  Google Scholar 

  44. N. Balke, H. Kungl, T. Granzow, D.C. Lupascu, M.J. Hoffmann, J. Rödel, J. Am. Ceram. Soc. 90, 3869–3874 (2007)

    CAS  Google Scholar 

  45. F.-Z. Yao, E.A. Patterson, K. Wang, W. Jo, J. Rödel, J.-F. Li, Appl. Phys. Lett. 104, 1–5 (2014)

    Google Scholar 

  46. X. Zhou, X. Yuan, Z. Yan, G. Xue, H. Luo, D. Zhang, J. Mater. Sci. 55, 7634–7644 (2020)

    CAS  Google Scholar 

  47. H. Simons, J. Glaum, J.E. Daniels, A.J. Studer, A. Liess, J. Rödel, M. Hoffman, J. Appl. Phys. 112, 044101 (2012)

    Google Scholar 

Download references

Funding

This work was supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by XJ, JX and CL. The first draft of the manuscript was written by XJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yunfei Liu or Yinong Lyu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Xu, J., Liu, C. et al. Enhanced strain and low hysteresis with good fatigue resistance in barium titanate-based piezoelectric ceramics. J Mater Sci: Mater Electron 34, 1392 (2023). https://doi.org/10.1007/s10854-023-10801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10801-3

Navigation