Skip to main content

Advertisement

Log in

Temperature-dependent energy storage performance of the ceramics in MPB region identified from the 1−(x + y) (Bi0.5Na0.5)TiO3-xBaTiO3-yBaZrO3 ternary ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, dielectric, ferroelectric, and energy storage characteristics of (Bi0.5Na0.5)TiO3–BaTiO3–BaZrO3 (BNBTZ) ternary ceramics were investigated. The presence of a tetragonal (P4bm) phase along with a rhombohedral (R3c) phase in the MPB region was quantified from the best fits in Rietveld refinement. Further, persistence of MPB throughout the compositions with substitution of BZ content was ascertained. Average grain size has decreased with the substitution of Ba2+ and Zr4+ions into the NBT-BT ceramics. Strong dependence of ferroelectric properties on the symmetry of crystal phases was found. The diminishing of covalent character has been found from the contraction of LO–TO splitting. Evidence for relaxor to antiferroelectric transition has been disclosed from the dielectric studies. A decrease in the remnant polarization and the coercive field with an increase in the BZ concentration is attributed to the change in long-range ferroelectric order. The prepared sample shows an energy storage density of 0.655 J/cm3 in x = 0.04, y = 0.04 composition at a temperature of 150 °C even at a low electric field of 40 kV/cm. The efficiency η values vary from 74.85 to 97.38% which is making the material a potential candidate for energy storage applications with better temperature stability of energy storage parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The dataset generated and analyzed during the current study is available from the corresponding author upon reasonable request.

References

  1. A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors. Materials 8, 8009 (2015). https://doi.org/10.3390/ma8125439

    Article  Google Scholar 

  2. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), p.317

    Google Scholar 

  3. J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x

    Article  CAS  Google Scholar 

  4. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N. Krainik, New ferroelectrics of complex composition. Sov. Phys. Solid State 2, 2651–2654 (1961)

    Google Scholar 

  5. T. Takenaka, K.-I.-I. Maruyama, K.S.K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991). https://doi.org/10.1143/JJAP.30.2236

    Article  CAS  Google Scholar 

  6. Y. Hosono, K. Harada, Y. Yamashita, Crystal growth and electrical properties of lead free piezoelectric material (Bi1/2Na1/2)TiO3-BaTiO3. Jpn. J. Appl. Phys. 40, 5722 (2001). https://doi.org/10.1143/JJAP.40.5722

    Article  CAS  Google Scholar 

  7. H. Lidjici, B. Laghoun, M. Berrahal, M. Rguitti, M.A. Hentatti, H. Khemakhem, XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3- xBaTiO3 lead free ceramics. J. Alloys Compd. 618, 643 (2015). https://doi.org/10.1016/j.jallcom.2014.08.161

    Article  CAS  Google Scholar 

  8. S.E. Park, K.S. Hong, Phase relations in the system (Bi1/2Na1/2)TiO3-PbTiO3 structure. J. Appl. Phys. 17, 383 (1996). https://doi.org/10.1063/1.362702

    Article  Google Scholar 

  9. K. Sakate, Y. Musuda, Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics 7, 347 (1974). https://doi.org/10.1080/00150197408238042

    Article  Google Scholar 

  10. G. Fan, W. Lu, X. Wang, F. Liang, J. Xiao, Phase transition behavior and electromechanical properties of (Na1/2Bi1/2)TiO3-KNbO3 lead-free piezoelectric ceramics. J. Phys. D Appl. Phys. 41, 035403 (2008). https://doi.org/10.1088/0022-3727/41/3/035403

    Article  CAS  Google Scholar 

  11. C.-C. Wu, Y.-H. Lin, P.-S. Cheng, C.C. Chan, The influences of NaNbO3 on the dielectric and structure characteristics of (1−x)(Na0.5Bi0.5)TiO3-xNaNbO3 ceramics. Adv. Mater. Res. 415, 1064 (2012). https://doi.org/10.4028/www.scientific.net/AMR.415-417.1064

    Article  CAS  Google Scholar 

  12. M. Ahart, M. Somayazulu, R. Cohen et al., Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545 (2008). https://doi.org/10.1038/nature06459

    Article  CAS  Google Scholar 

  13. Abdel-Baset, M.A. Ibrahim, R. Murugan, M.A. Rahman, J. Osman, in Ferroelectrics: Physical Effects ed. by M. Lallart (BoD—Books on Demand, 2011).

  14. A. Prado-Espinosa, J. Camargo, A. del Campo, F.R. Marcos, Exploring new methodologies for the identification of the morphotropic phase boundary region in the (BiNa)TiO3-BaTiO3 lead-free piezoceramics. Confocal Raman Microsc. 12, 308 (2017). https://doi.org/10.1016/j.jallcom.2017.12.308

    Article  CAS  Google Scholar 

  15. D. Rout, K.-S. Moon, J. Park, S.-J.L. Kang, High-temperature X-ray diffraction and Raman scattering studies of Ba-doped (Na0.5Bi0.5)TiO3Pb-free piezoceramics. Curr. Appl. Phys. 13, 1988 (2013). https://doi.org/10.1016/j.cap.2013.08.016

    Article  Google Scholar 

  16. O. Saburi, Properties of semiconductive barium titanates. J. Phys. Soc. Jpn. 14, 1159 (1959). https://doi.org/10.1143/JPSJ.14.1159

    Article  CAS  Google Scholar 

  17. T. Badapanda, S. Sahoo, P. Nayak, Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region. IOP Conf. Ser. Mater. Sci. Eng. 178, 012032 (2017). https://doi.org/10.1088/1757-899X/178/1/012032

    Article  Google Scholar 

  18. A. Hussain, J.U. Rahman, A. Maqbool, M.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Structural and electromechanical properties of lead-free Na0.5Bi0.5TiO3-BaZrO3 ceramics. Phys. Status Solidi 211, 1704 (2014). https://doi.org/10.1002/pssa.201330472

    Article  CAS  Google Scholar 

  19. R. Roukos, J. Romanos, S.A. Dargham, D. Chaumont, Evidence of a stable tetragonal (P4bm) phase in rhombohedral (R3c) complex perovskite (Na1/2Bi1/2)1−xCaxTiO3 lead free piezoelectric materials. J. MSEB 288, 116196 (2023). https://doi.org/10.1016/j.mseb.2022.116196

    Article  CAS  Google Scholar 

  20. H.S. Mohanty, A. Kumar, B. Sahoo, Impedance spectroscopic study on microwave sintered (1−x)Na0.5Bi0.5TiO3-xBaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 29, 6966 (2018). https://doi.org/10.1007/s10854-018-8683-2

    Article  CAS  Google Scholar 

  21. B. Parija, T. Badapanda, P.K. Sahoo, Structural and electromechanical study of Bi0.5Na0.5TiO3-BaTiO3 solid-solutions. Process. Appl. Ceram. 7, 73 (2013). https://doi.org/10.2298/PAC1302073P

    Article  CAS  Google Scholar 

  22. D.L. Corker, A.M. Glazer, R.W. Whatmore, A. Stallard, F. Fauth, A neutron diffraction investigation into the rhombohedral phases of the perovskite series PbZr1xTixO3. J. Phys. Condens. Matter 10, 6251 (1998). https://doi.org/10.1088/0953-8984/10/28/007

    Article  CAS  Google Scholar 

  23. G.O. Jones, P.A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Cryst. B 58, 168–178 (2002)

    Article  CAS  Google Scholar 

  24. T. Hahn, International Tables for Crystallography Volume A: Space-Group Symmetry, 5th edn. (Springer, Berlin, 2005), p.16

    Google Scholar 

  25. Z. Yang, H.D. Shaobo, Y.H. Qu, H. Ma, Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A (2016). https://doi.org/10.1039/C6TA04107H

    Article  Google Scholar 

  26. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J Mater Sci Lett 15, 1767–1769 (1996). https://doi.org/10.1007/BF00275336

    Article  CAS  Google Scholar 

  27. D.E.J. Ruth, B. Sundarakannan, Structural and Raman spectroscopic studies of poled lead-free piezoelectric sodium bismuth titanate ceramics. Ceram. Int. 42, 4775 (2016). https://doi.org/10.1016/j.ceramint.2015.11.162

    Article  CAS  Google Scholar 

  28. S. Shanmuga Sundari, B. Kumar, R. Dhanasekaran, Synthesis, dielectric and relaxation behavior of lead free NBT-BT ceramics. Ceram. Int. 39, 555 (2013). https://doi.org/10.1016/j.ceramint.2012.06.063

    Article  CAS  Google Scholar 

  29. S. Trujillo, J. Kreisel, Q. Jiang, J.H. Smith, P.A. Thomas, P. Bouvier, F. Weiss, The high-pressure behaviour of Ba-doped Na1/2Bi1/2TiO3 investigated by Raman spectroscopy. J. Phys. Condens. Matter 17, 6587 (2005). https://doi.org/10.1088/0953-8984/17/41/027

    Article  CAS  Google Scholar 

  30. B. Parija, T. Badapanda, S.K. Rout, Morphotropic phase boundary and electrical properties of 1−x[Bi0.5Na0.5]TiO3-xBa[Zr0.25Ti0.75]O3 lead-free piezoelectric ceramics. Ceram. Int. 39, 4877 (2013). https://doi.org/10.1016/j.ceramint.2012.11.080

    Article  CAS  Google Scholar 

  31. V. Ozolin, A. Zunger, First-principles theory of the evolution of vibrational properties with long-range order in GaInP2. Am. Phys. Soc. 57, 16 (1998). https://doi.org/10.1103/PhysRevB.57.R9404

    Article  Google Scholar 

  32. S. Swain, S.K. Kar, P. Kumar, Dielectric, optical, piezoelectric and ferroelectric studies of NBT-BT ceramics near MPB. Ceram. Int. 41, 10710–10717 (2015). https://doi.org/10.1016/j.ceramint.2015.05.005

    Article  CAS  Google Scholar 

  33. M. Sahu, T. Karthik, A. Srinivas, S. Asthana, Structural and microstructural correlation with ferroelectric and dielectric properties of nanostructured Na0.5Bi0.5TiO3 ceramics. J. Mater. Sci. Mater. Electron. 26, 9741–9746 (2015). https://doi.org/10.1007/s10854-015-3643-6

    Article  CAS  Google Scholar 

  34. M.-S. Yoon, H.M.J. Kim, Spontaneous micro-macro ferroelectric domain switching in PbZrO3-doped Pb(Ni1/3Nb2/3)O3-PbTiO3 system. Jpn. J. Appl. Phys. 34, 1916 (1995). https://doi.org/10.1143/JJAP.34.1916

    Article  CAS  Google Scholar 

  35. J. Glaum, H. Simons, M. Acosta, M. Hoffman, Tailoring the piezoelectric and relaxor properties of (Bi1/2Na1/2)TiO3-BaTiO3 via zirconium doping. J. Am. Ceram. Soc. 96, 2881 (2013). https://doi.org/10.1111/jace.12405

    Article  CAS  Google Scholar 

  36. A. Prasatkhetragarn, N. Vittayakorn, S. Ananta, R. Yimnirun, D.P. Cann, Synthesis and dielectric and ferroelectric properties of ceramics in (1–x) Pb (Zr1/2Ti1/2) O3-(x) Pb (Co1/3Nb2/3) O3 system. Jpn. J. Appl. Phys. 47, 998 (2008). https://doi.org/10.1143/JJAP.47.998

    Article  CAS  Google Scholar 

  37. M.V.G. Babu, B. Bagyalakshmi, L. Venkidu, B. Sundarakannan, Grain size effect on structure and electrical properties of lead-free ceramics. J. Ceram. Int. 43, 12599 (2017). https://doi.org/10.1016/j.ceramint.2017.06.137

    Article  CAS  Google Scholar 

  38. W.-C. Lee, Y.-F. Lee, M.-H. Tseng, C.-Y. Huang, Crystal structure and ferroelectric properties of (Bi0.5Na0.5)TiO3-Ba(Zr0.05Ti0.95)O3 piezoelectric ceramics. J. Am. Ceram. Soc. 92, 1069 (2009). https://doi.org/10.1111/j.1551-2916.2009.03034.x

    Article  CAS  Google Scholar 

  39. P.-Y. Chen, C.-S. Chen, C.-S. Tu, T.-L. Chang, Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3-7.5%BaTiO3 ceramics. J. Eur. Ceram. Soc. 34, 4223 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.05.044

    Article  CAS  Google Scholar 

  40. F. Li, J. Zhai, B. Shen, X. Liu, K. Yang, Y. Zhang, P. Li, B. Liu, H. Zheng, Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J. Appl. Phys. 121, 054103 (2017). https://doi.org/10.1063/1.4975409

    Article  CAS  Google Scholar 

  41. W.-Q. Luo, Z.-Y. Shen, Yu. Yuan-Ying, F.-S. Song, Z.-M. Wang, Y.-M. Li, Structure and dielectric properties of NBT-BT-ST lead-free ceramics for energy storage. J. Adv. Dielectr. 6, 1820004 (2018). https://doi.org/10.1142/S2010135X18200047

    Article  CAS  Google Scholar 

  42. M. Höfling, S. Steiner, A.-P. Hoang, I.-T. Seo, T. Frömling, Optimizing the defect chemistry of Na1/2Bi1/2TiO3-based materials: paving the way for excellent high temperature capacitors. J. Mater. Chem. C 6, 4769–4776 (2018). https://doi.org/10.1039/C8TC01010B

    Article  Google Scholar 

  43. M. Yao, Y. Pu, L. Zhang, M. Chen, Enhanced energy storage properties of (1−x)Bi0.5Na0.5TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. Mater. Lett. 174, 110–113 (2016). https://doi.org/10.1016/j.matlet.2016.03.089

    Article  CAS  Google Scholar 

  44. X. Zhou, C. Yuan, Q. Li et al., Energy storage properties and electrical behavior of lead-free (1 − x) Ba0.04Bi0.48Na0.48TiO3–xSrZrO3 ceramics. J. Mater. Sci. Mater. Electron. 27, 3948–3956 (2016). https://doi.org/10.1007/s10854-015-4247-x

    Article  CAS  Google Scholar 

  45. Q. Li, J. Wang, Z. Liu et al., Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3–0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J. Mater. Sci. 51, 1153–1160 (2016). https://doi.org/10.1007/s10853-015-9446-6

    Article  CAS  Google Scholar 

  46. C. Cui, Y. Pu, R. Shi, High-energy storage performance in lead-free 0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3 relaxor ferroelectric ceramics. J. Alloys Compd. 740, 1180–1187 (2018). https://doi.org/10.1016/j.jallcom.2018.01.106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

XRD facility in the Department of Physics granted by DST-FIST is acknowledged. The SEM-EDS facility provided by the RUSA grant is also acknowledged. PE loop tester facility provided by SERB Grant CRG/2019/006990 is also acknowledged.

Funding

The research investigation was carried out with the financial support of Bharat Ratna DR. M.G. Ramachandran centenary Research fellowship, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India.

Author information

Authors and Affiliations

Authors

Contributions

GCA contributed to conceptualization, methodology, software, and writing of the original draft. LV contributed to software and validation. PMPD contributed to investigation. DD and NVG provided the resource. Dr. BS contributed to conceptualization, supervision, validation, and writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to B. Sundarakannan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ancy, G.C., Venkidu, L., Priya Dharsini, P.M. et al. Temperature-dependent energy storage performance of the ceramics in MPB region identified from the 1−(x + y) (Bi0.5Na0.5)TiO3-xBaTiO3-yBaZrO3 ternary ceramics. J Mater Sci: Mater Electron 34, 1373 (2023). https://doi.org/10.1007/s10854-023-10799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10799-8

Navigation