Skip to main content
Log in

Enhanced electrochemical performance of LiV2O4-coated and V4+-doped LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In spite of the advantages of LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials such as high energy density and high capacity, their capacity decay during cycling is still a significant problem, which are mainly due to the internal structural collapse and the surge in interfacial impedance caused by interfacial side reactions. To address these issues, wet chemical methods and annealing treatments were used to create LiV2O4-coated and V4+-doped NCM811 cathode materials. The LiV2O4 coating layer and the doped V4+ had little effect on the crystal structure of the NCM811, according to X-ray powder diffraction and Rietveld refinement studies. Scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy data all showed that the LiV2O4 layer was successfully coated on the surface of the spherical particles and some of the V4+ was successfully introduced into the bulk phase. Thanks to the ion-conducting layer, LiV2O4, the interfacial impedance was reduced while the Li+ diffusion rate was accelerated, and the V4+ doped into the bulk phase stabilizes the internal structure, significantly increasing the cycling stability and the rate performance of NCM811. In particular, when the coating amount was 0.6 wt%, the initial discharge specific capacity reached 203.5 mAh/g at 2.8–4.3 V at 0.1 C, and the retention rate was 87.6% after 100 cycles, which was 12.1% higher compared to 75.5% of the original sample. And when the rate was raised to 5 C, the original sample’s capacity plummeted to only about 100 mAh/g, but the sample with 0.6 wt% of coating was still 140.9 mAh/g. Experiments confirmed that this LiV2O4 coating modification with synergistic V4+ doping provided an innovative technique for boosting the electrochemical performance of Ni-rich ternary cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets obtained during the current study are available from the corresponding authors upon reasonable request.

References

  1. S. Choi, G.X. Wang, Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201700376

    Article  Google Scholar 

  2. F.F. Cao, Y.G. Guo, L.J. Wan, Energy Environ. Sci. 4, 1634 (2011). https://doi.org/10.1039/c0ee00583e

    Article  CAS  Google Scholar 

  3. T. Ohzuku, R.J. Brodd, J. Power Sources. 174, 449 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.154

    Article  CAS  Google Scholar 

  4. T. Placke, R. Kloepsch, S. Duhnen, M. Winter, J. Solid State Electrochem. 21, 1939 (2017). https://doi.org/10.1007/s10008-017-3610-7

    Article  CAS  Google Scholar 

  5. A. Ritchie, W. Howard, J. Power Sources. 162, 809 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.014

    Article  CAS  Google Scholar 

  6. B. Zhu, Z. Yu, L. Meng, Z. Xu, C. Lv, Y. Wang, G. Wei, J. Qu, Ionics. 27, 2749 (2021). https://doi.org/10.1007/s11581-021-04019-8

    Article  CAS  Google Scholar 

  7. X. Tan, M. Zhang, J. Li, D. Zhang, Y. Yan, Z. Li, Ceram. Int. 46, 21888 (2020). https://doi.org/10.1016/j.ceramint.2020.06.091

    Article  CAS  Google Scholar 

  8. Z. Feng, D. Sun, Y. Tang, H. Wang, Prog. Chem. 31, 442 (2019). https://doi.org/10.7536/pc180714

    Article  CAS  Google Scholar 

  9. Y. Gao, X. Wang, J. Geng, F. Liang, M. Chen, Z. Zou, J. Electron. Mater. (2022). https://doi.org/10.1007/s11664-022-09978-w

    Article  Google Scholar 

  10. S.K. Jung, H. Gwon, J. Hong, K.Y. Park, D.H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Adv. Energy Mater. (2014). https://doi.org/10.1002/aenm.201300787

    Article  Google Scholar 

  11. Y. Ding, B. Deng, H. Wang, X. Li, T. Chen, X. Yan, Q. Wan, M. Qu, G. Peng, J. Alloys Compd. 774, 451 (2019). https://doi.org/10.1016/j.jallcom.2018.09.286

    Article  CAS  Google Scholar 

  12. X. Bai, L. Ban, W. Zhuang, J. Inorg. Mater. 35, 972 (2020). https://doi.org/10.15541/jim20190568

    Article  Google Scholar 

  13. F.T. Geldasa, M.A. Kebede, M.W. Shura, F.G. Hone, RSC Adv. 12, 5891 (2022). https://doi.org/10.1039/d1ra08401a

    Article  CAS  Google Scholar 

  14. J. Li, L.E. Downie, L. Ma, W.D. Qiu, J.R. Dahn, J. Electrochem. Soc. 162, A1401 (2015). https://doi.org/10.1149/2.1011507jes

    Article  CAS  Google Scholar 

  15. Y. Makimura, S. Zheng, Y. Ikuhara, Y. Ukyo, J. Electrochem. Soc. 159, A1070 (2012). https://doi.org/10.1149/2.073207jes

    Article  CAS  Google Scholar 

  16. S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, K. Nakura, J. Power Sources. 258, 210 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.018

    Article  CAS  Google Scholar 

  17. Y. Chen, M. Wang, J. Chen, J. Yang, Z. Li, Y. Huang, Z. Chen, Y. Zou, J. Zheng, X. Li, Mater. Lett. (2020). https://doi.org/10.1016/j.matlet.2020.127771

    Article  Google Scholar 

  18. L.T. Dou, P. Hu, C.Q. Shang, H. Wang, D.D. Xiao, U. Ahuja, K. Aifantis, Z.H. Zhang, Z.L. Huang, Chemelectrochem. 8, 4321 (2021). https://doi.org/10.1002/celc.202101230

    Article  CAS  Google Scholar 

  19. L.Z. You, Y. Wen, G.X. Li, B.B. Chu, J.H. Wu, T. Huang, A.S. Yu, J. Mater. Chem. A 10, 5631 (2022). https://doi.org/10.1039/d2ta00135g

    Article  CAS  Google Scholar 

  20. H.B. Kim, B.C. Park, S.T. Myung, K. Amine, J. Prakash, Y.K. Sun, J. Power Sources. 179, 347 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.109

    Article  CAS  Google Scholar 

  21. S. Ma, X. Zhang, S. Li, Y. Cui, Y. Cui, Y. Zhao, Y. Cui, Ionics. 26, 2165 (2020). https://doi.org/10.1007/s11581-019-03353-2

    Article  CAS  Google Scholar 

  22. S. Dai, G. Yan, L. Wang, L. Luo, Y. Li, Y. Yang, H. Liu, Y. Liu, M. Yuan, J. Electroanal. Chem. (2019). https://doi.org/10.1016/j.jelechem.2019.113197

    Article  Google Scholar 

  23. L.-J. Chang, S.-Y. Cao, S.-H. Luo, K. Li, X.-L. Bi, A.-L. Wei, J.-N. Liu, Energy Technol. (2021). https://doi.org/10.1002/ente.202100637

    Article  Google Scholar 

  24. X. Feng, J. Zhang, L. Yin, Powder Technol. 287, 77 (2016). https://doi.org/10.1016/j.powtec.2015.09.031

    Article  CAS  Google Scholar 

  25. S. Zhao, Y. Bai, L. Ding, B. Wang, W. Zhang, Solid State Ion. 247, 22 (2013). https://doi.org/10.1016/j.ssi.2013.05.022

    Article  CAS  Google Scholar 

  26. B. Zhang, P. Dong, H. Tong, Y. Yao, J. Zheng, W. Yu, J. Zhang, D. Chu, J. Alloys Compd. 706, 198 (2017). https://doi.org/10.1016/j.jallcom.2017.02.224

    Article  CAS  Google Scholar 

  27. Z. Chen, Z.L. Wang, G.T. Kim, G. Yang, H.H. Wang, X.S. Wang, Y.Z. Huang, S. Passerini, Z.X. Shen, ACS Appl. Mater. Interfaces. 11, 26994 (2019). https://doi.org/10.1021/acsami.9b08591

    Article  CAS  Google Scholar 

  28. Y.H. Chen, J. Zhang, Y. Li, Y.F. Zhang, S.P. Huang, W. Lin, W.K. Chen, PCCP. 23, 11528 (2021). https://doi.org/10.1039/d1cp00426c

    Article  CAS  Google Scholar 

  29. Y. Lu, X. Zeng, J. Wang, L. Yang, S. Hu, C. Jia, H. Zhao, D. Yin, X. Ge, X. Xi, Adv. Mater. Interfaces (2019). https://doi.org/10.1002/admi.201901368

    Article  Google Scholar 

  30. M. Jo, M. Noh, P. Oh, Y. Kim, J. Cho, Adv. Energy Mater. (2014). https://doi.org/10.1002/aenm.201301583

    Article  Google Scholar 

  31. Y.Q. Wang, Z.Z. Yang, Y.M. Qian, L. Gu, H.S. Zhou, Adv. Mater. 27, 3915 (2015). https://doi.org/10.1002/adma.201500956

    Article  CAS  Google Scholar 

  32. X. Lai, G. Hu, Z. Peng, H. Tong, Y. Lu, Y. Wang, X. Qi, Z. Xue, Y. Huang, K. Du, Y. Cao, J. Power Sources. 431, 144 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.044

    Article  CAS  Google Scholar 

  33. A.M. Andersson, D.P. Abraham, R. Haasch, S. MacLaren, J. Liu, K. Amine, J. Electrochem. Soc. 149, A1358 (2002). https://doi.org/10.1149/1.1505636

    Article  CAS  Google Scholar 

  34. W. Liu, X. Li, D. Xiong, Y. Hao, J. Li, H. Kou, B. Yan, D. Li, S. Lu, A. Koo, K. Adair, X. Sun, Nano Energy. 44, 111 (2018). https://doi.org/10.1016/j.nanoen.2017.11.010

    Article  CAS  Google Scholar 

  35. W. Xiang, C.-Q. Zhu, J. Zhang, H. Shi, Y.-T. Liang, M.-H. Yu, X.-M. Zhu, F.-R. He, G.-P. Lv, X.-D. Guo, J. Alloys Compd. 786, 56 (2019). https://doi.org/10.1016/j.jallcom.2019.01.264

    Article  CAS  Google Scholar 

  36. L.-. Li, Z.-X. Wang, Q.-C. Liu, C. Ye, Z.-Y. Chen, L. Gong, Electrochim. Acta. 77, 89 (2012). https://doi.org/10.1016/j.electacta.2012.05.076

    Article  CAS  Google Scholar 

  37. Q. Fu, F. Du, X. Bian, Y. Wang, X. Yan, Y. Zhang, K. Zhu, G. Chen, C. Wang, Y. Wei, J. Mater. Chem. A 2, 7555 (2014). https://doi.org/10.1039/c4ta00189c

    Article  CAS  Google Scholar 

  38. H. Wang, D.M. Sun, X. Li, W.J. Ge, B.W. Deng, M.Z. Qu, G.C. Peng, Electrochim. Acta. 254, 112 (2017). https://doi.org/10.1016/j.electacta.2017.09.111

    Article  CAS  Google Scholar 

  39. J. Fu, D. Mu, B. Wu, J. Bi, X. Liu, Y. Peng, Y. Li, F. Wu, Electrochim. Acta. 246, 27 (2017). https://doi.org/10.1016/j.electacta.2017.06.038

    Article  CAS  Google Scholar 

  40. H.-J. Noh, S. Youn, C.S. Yoon, Y.-K. Sun, J. Power Sources. 233, 121 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  CAS  Google Scholar 

  41. D.D. MacNeil, Z. Lu, J.R. Dahn, J. Electrochem. Soc. 149, A1332 (2002). https://doi.org/10.1149/1.1505633

    Article  CAS  Google Scholar 

  42. S.H. Kang, D.P. Abraham, W.S. Yoon, K.W. Nam, X.Q. Yang, Electrochim. Acta. 54, 684 (2008). https://doi.org/10.1016/j.electacta.2008.07.007

    Article  CAS  Google Scholar 

  43. J.-Z. Kong, S.-S. Wang, G.-A. Tai, L. Zhu, L.-G. Wang, H.-F. Zhai, D. Wu, A.-D. Li, H. Li, J. Alloys Compd. 657, 593 (2016). https://doi.org/10.1016/j.jallcom.2015.10.187

    Article  CAS  Google Scholar 

  44. X. Li, K. Zhang, D. Mitlin, Z. Yang, M. Wang, Y. Tang, F. Jiang, Y. Du, J. Zheng, Chem. Mater. 30, 2566 (2018). https://doi.org/10.1021/acs.chemmater.7b04861

    Article  CAS  Google Scholar 

  45. L. Depicciotto, Solid State Ion. 28, 1364 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful the support from the National Natural Science Foundation of China (No. 51562006 and No. 52162038) and the Guangxi Distinguished Experts Special Fund (No. 2019B06).

Funding

Funding was provided by the National Natural Science Foundation of China (No. 51562006 and No. 52162038) and the Special Fund for Distinguished Experts in Guangxi of China (No. 2019B06).

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed to this study. Experimental manipulations were performed by YG and XW, while JG, MC, and FY for data collection and analysis. The first draft of the manuscript was written by YG, and ZZ reviewed previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Zhengguang Zou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The authors declare this article does not involve research with humans or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, X., Zou, Z. et al. Enhanced electrochemical performance of LiV2O4-coated and V4+-doped LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries. J Mater Sci: Mater Electron 34, 1448 (2023). https://doi.org/10.1007/s10854-023-10798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10798-9

Navigation