Skip to main content
Log in

RETRACTED ARTICLE: Effect of oxygen concentration in ZnO-based transparent flexible memristor synapse

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 11 October 2023

This article has been updated

Abstract

Memristor which acts as an artificial synapse is truly inspired by biological neurons. This device does emulate various synaptic behavior as the brain of a human. In this work, Aluminum-Zinc Oxide (AZO)-based transparent flexible memristor is fabricated on a flexible Polyethylene Naphthalate (PEN) substrate. The composition of the device for the optimized flow rate of Ar:O2::2:1 is analyzed using X-ray photoelectron spectroscopy (XPS). A bipolar resistive switching behavior of AZO/ZnO/ITO exhibits in the device. It shows good endurance of more than 500 cycles and has a long retention up to 104 s. The improvement of non-linearity (potentiation 2.31 and depression 3.05) is obtained for the optimized device, having stable 25 cycles epochs. About 90% transparency in the visible region makes the device suitable for invisible electronics. These results show that the device can be used as a transparent electrode in neuromorphic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during this study are not publicly available due to confidentiality but are available from the corresponding author upon reasonable request.

Change history

References

  1. G.E. Moore, Electronics. pp. 114–117 (1965)

  2. D. Panda, C.A. Chu, A. Pradhan, S. Chandrasekharan, B. Pattanayak, S.M. Sze, T.-Y. Tseng, Semicond. Sci. Technol. 36, 045002 (2021)

    Article  CAS  Google Scholar 

  3. S. Chandrasekaran, F.M. Simanjuntak, D. Panda, T.Y. Tseng, IEEE Trans. Electron. Devices. 66, 4722–4726 (2019)

    Article  CAS  Google Scholar 

  4. J. Wang, D. Ren, Z. Zhang, H. Xiang, J. Zhao, Z. Zhou, X. Li, H. Wang, L. Zhang, M. Zhao, Y. Fang, C. Lu, C. Zhao, C.Z. Zhao, X. Yan, Appl. Phys. Lett. 113, 122907 (2018)

    Article  Google Scholar 

  5. Z. Peng, F. Wu, L. Jiang, G. Cao, B. Jiang, G. Cheng, S. Ke, K. Chang, L. Li, C. Ye, Adv. Funct. Mater. 31, 2107131 (2021)

    Article  CAS  Google Scholar 

  6. T. Chang, S.H. Jo, K.H. Kim, P. Sheridan, S. Gaba, W. Lu, Appl. Phys. A 102, 857–863 (2011)

    Article  CAS  Google Scholar 

  7. T. Chang, The University of Michigan USA. (2012), 4

  8. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 7 (2008)

    Article  Google Scholar 

  9. T. Shi, X.B. Yin, R. Yang, X. Guo, Phys. Chem. Chem. Phys. 18, 14 (2016)

    Google Scholar 

  10. S.K. Mohanty, P.K. Reddy, O.K. Prasad, C.H. Wu, K.M. Chang, J.C. Lin, IEEE Electron Device Lett. 42, 12 (2021)

    Article  Google Scholar 

  11. S.K. Mohanty, K.P.K. Reddy, C.H. Wu, P.T. Lee, K.M. Chang, P. Busa, Y. Kuthati, Electron. 11, 21 (2022)

    Google Scholar 

  12. S.K. Mohanty, D. Panda, K.P.K. Reddy, P.T. Lee, C.H. Wu, K.M. Chang, Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.02.052

    Article  Google Scholar 

  13. P.X. Chen, D. Panda, T.Y. Tseng, Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-28505-3

    Article  Google Scholar 

  14. R. Singh, M. Kumar, S. Iqbal, H. Kang, J.Y. Park, H. Seo, Appl. Surf. Sci. 536, 147738 (2021)

    Article  CAS  Google Scholar 

  15. M. Kumar, S. Abbas, J. Kim, ACS Appl. Mater. Interfaces. 10, 34370–34376 (2018)

    Article  CAS  Google Scholar 

  16. D.C. Hu, R. Yang, L. Jiang, X. Guo, ACS. Appl. Mater. Interfaces.  10, 6463–6470 (2018)

  17. M. Lee, W. Lee, S. Choi, J.W. Jo, J. Kim, S.K. Park, Y.H. Kim, Adv. Mater. 29, 1700951 (2017)

    Article  Google Scholar 

  18. H.K. He, R. Yang, W. Zhou, H.M. Huang, J. Xiong, L. Gan, T.Y. Zhai, X. Guo, Small 14(15), 1800079 (2018)

    Article  Google Scholar 

  19. Y.J. Choi, K.M. Kang, H.H. Park, J. Microelectron. Packaging Soc. 21, 1 (2014)

    Google Scholar 

  20. J.Y. Choi, K. Heo, K.S. Cho, S.W. Hwang, S. Kim, S.Y. Lee, Sci. Rep. 6, 36504 (2016)

    Article  CAS  Google Scholar 

  21. H. Meng, AIMS Mater. Sci. 7, 5 (2020)

    Google Scholar 

  22. M.M. Nauman, M.Z. Esa, J.H. Zaini, A. Iqbal, S.A. Bakar, IEEE. pp. 167–171 (2020). https://doi.org/10.1109/ICMIMT49010.2020.9041208

  23. C.L. Lin, C.C. Tang, S.C. Wu, P.C. Juan, T.K. Kang, Microelectron. Eng. 136, 15–21 (2015)

    Article  CAS  Google Scholar 

  24. F.M. Simanjuntak, S. Chandrasekaran, C.C. Lin, T.Y. Tseng, APL. Mater. 7, 5 (2019)

    Article  Google Scholar 

  25. R. Zhang, J. Miao, F. Shao, W.T. Huang, C. Dong, X.G. Xu, Y. Jiang, J. Non. Cryst. Solids. 406, 102–106 (2014)

    Article  CAS  Google Scholar 

  26. H. Yu, M. Kim, Y. Kim, J. Lee, K. Kim, S. Choi, S. Cho, Electron. Mater. Lett. 10, 321–324 (2014)

    Article  CAS  Google Scholar 

  27. L. Shi, D. Shang, J. Sun, B. Shen, C. Sio, Appl. Phys. Express. 2, 101602 (2009)

    Article  Google Scholar 

  28. A. Kim, K. Song, Y. Kim, J. Moon, ACS Appl. Mater. Interfaces. 3, 11 (2011)

    Article  Google Scholar 

  29. M.C. Chen, T.C. Chang, S.Y. Huang, S.C. Chen, C.W. Hu, C.T. Tsai, S.M. Sze, Electrochem. Solid-State Lett. 13, H191 (2010)

    Article  CAS  Google Scholar 

  30. P. Misra, A.K. Das, L.M. Kukreja, Phys. Status Solidi Curr. Top. Solid State Phys. 7, 6 (2010)

    Google Scholar 

  31. X. Cao, X. Li, X. Gao, X. Liu, C. Yang, R. Yang, P. Jin, J. Phys. D: Appl. Phys. 44, 255104 (2011)

    Article  Google Scholar 

  32. F.M. Simanjuntak, O.K. Prasad, D. Panda, C.A. Lin, T.L. Tsai, K.H. Wei, T.Y. Tseng, Appl. Phys. Lett. 108, 183506 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DP conceived the idea, fabricated the device and performed all measurements. The manuscript was written by AP, under the guidance of DP. SKM and NS helped with data interpretation and formatting. The final draft is verified by DP. All authors read the manuscript, finalized and approved.

Corresponding author

Correspondence to Debashis Panda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, A., Mohanty, S.K., Sahoo, N. et al. RETRACTED ARTICLE: Effect of oxygen concentration in ZnO-based transparent flexible memristor synapse. J Mater Sci: Mater Electron 34, 1406 (2023). https://doi.org/10.1007/s10854-023-10797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10797-w

Navigation