Skip to main content
Log in

Effects of Li substitution on the sintering behavior, lattice vibration, bond covalence and dielectric properties of SrMgGe2O6 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pyroxene structure SrMg1–xLi2xGe2O6 (x = 0.025–0.1) ceramics were prepared by a solid-state reaction method. Examines the impact of Li substitution on the sintering behavior, lattice vibration, bond covalence, and dielectric properties of SrMgGe2O6 ceramics. SrMgGe2O6 (space group: C2/c) was detected by XRD. Li+ can enter the lattice to form SrMg1–xLi2xGe2O6 solid solution. Through Rietveld refinement results, the effect of the Li+ doped content on the microwave performances of SMLG ceramics was analyzed. SEM results showed that SrMg0.925Li0.15Ge2O6 ceramics had the best surface morphology at 950 °C, and exhibited excellent microwave dielectric properties of εr = 5.91, Qf = 36,985 GHz, τf = -59 ppm/ °C. The relationship between the Qf value of SMLG ceramics and the packing fraction, and the bond valence is discussed. Calculating MgO6 octahedral distortion and bond energy can explain the change in τf value. SMLG Ceramics is a strong candidate in the LTCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. F.F. Wu, D. Zhou, C. Du, B.B. Jin, C. Li, Z.M. Qi, S. Sun, T. Zhou, Q. Li, X.Q. Zhang, Design of a Sub-6 GHz dielectric resonator antenna with novel temperature-stabilized Sm1–xBixNbO4 (x = 0–0.15) microwave dielectric ceramics. ACS Appl. Mater. Interfaces 14(5), 7030–7038 (2022). https://doi.org/10.1021/acsami.1c24307

    Article  CAS  Google Scholar 

  2. X. Ma, J. Du, X. Ji, L. Liu, H. Wu, H. Kimura, Y. Lu, Z. Yue, Influence of Sn4+ substitution for Zr4+ in Nd2Zr3(MoO4)9 and the impact on the crystal structure and microwave dielectric properties. J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162526

    Article  Google Scholar 

  3. X. Wei, Y. He, K. Liu, P. Gao, X. Chen, X. Liu, H. Zhou, Sintering behavior, crystal structure, and microwave dielectric properties of a novel diopside SrMgGe2O6 ceramic and adjustment of its τf value. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.12.259

    Article  Google Scholar 

  4. J. Bao, H. Li, X. Xu, W. Guo, Y. Chen, Y. Zhang, J. Du, H. Wu, G. Duan, Z. Yue, Crystal structure, Raman spectrum, bond characteristics, and terahertz time-domain spectrum of novel Na5Tm(MoO4)4 microwave dielectric ceramic with ultra-low sintering temperature and high quality factor. J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2022.168652

    Article  Google Scholar 

  5. Z. Fang, L.-X. Pang, D. Zhou, X.-L. Wang, S. Ren, W.-G. Liu, Low-loss and temperature stable (1–x)Ba3P2O8-xMg2B2O5 composite ceramics with low sintering temperature. J. Eur. Ceram. Soc. 43(5), 1972–1977 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.11.064

    Article  CAS  Google Scholar 

  6. Y. He, X. Wei, Y. Wu, X. Chen, J. Yang, H. Zhou, Effects of packing fraction, lattice vibration, and bond valence on the microwave dielectric properties of low-ε garnet-type Ca3Sc2Ge3O12 ceramics. J. Solid State Chem. (2023). https://doi.org/10.1016/j.jssc.2023.123980

    Article  Google Scholar 

  7. M. Yang, Y. Gao, Y. Zheng, X. Lu, H. Yang, X. Xu, P. Wu, Microwave dielectric properties of Ca1–xBaxMgSi2O6 ceramics. Ceram. Int. 48(7), 9407–9412 (2022). https://doi.org/10.1016/j.ceramint.2021.12.136

    Article  CAS  Google Scholar 

  8. K. Du, C.-Z. Yin, J.-Q. Yang, W. Luo, X.-C. Wang, W.-Z. Lu, W. Lei, Crystal structure, far-infrared spectra, and microwave dielectric properties of bazirite-type BaZr(Si1–xGex)3O9 ceramics. Ceram. Int. 48(3), 3592–3599 (2022). https://doi.org/10.1016/j.ceramint.2021.10.139

    Article  CAS  Google Scholar 

  9. X. Zhou, K. Wang, S. Hu, X. Luan, S. He, X. Wang, S. Zhou, X. Chen, H. Zhou, Preparation, structure and microwave dielectric properties of novel La2MgGeO6 ceramics with hexagonal structure and adjustment of its τ value. Ceram. Int. 47(6), 7783–7789 (2021). https://doi.org/10.1016/j.ceramint.2020.11.123

    Article  CAS  Google Scholar 

  10. P. Zhang, X. Tian, X. Fan, A novel BaMg1.98Zn0.02V2O8 ceramic with low dielectric loss and good temperature stability for low temperature co-fired ceramic technology. Ceram. Int. 48(24), 36186–36192 (2022). https://doi.org/10.1016/j.ceramint.2022.08.175

    Article  CAS  Google Scholar 

  11. H. Wang, S. Li, K. Wang, X. Wang, H. Zhang, Y. Wu, X. Chen, H. Zhou, Sintering characteristic, structure, microwave dielectric properties, and compatibility with Ag of novel 3MgO-B2O3-xwt% BaCu(B2O5)-ywt% H3BO3 ceramics. J. Asian Ceram. (2022). https://doi.org/10.1080/21870764.2022.2053277

    Article  Google Scholar 

  12. Q. Zhang, H. Su, H. Zhang, X. Tang, Bond, vibration and microwave dielectric characteristics of Zn1–x(Li0.5Bi0.5)xWO4 ceramics with low temperature sintering. J. Materiomics 8(2), 392–400 (2022). https://doi.org/10.1016/j.jmat.2021.08.003

    Article  Google Scholar 

  13. H. Wang, S. Li, K. Wang, X. Chen, H. Zhou, Sintering behaviour and microwave dielectric properties of MgO-2B2O3-xwt%BaCu(B2O5)-ywt%H3BO3 ceramics. J. Adv. Ceram. 10(6), 1282–1290 (2021). https://doi.org/10.1007/s40145-021-0503-0

    Article  CAS  Google Scholar 

  14. X. Zhong, Z. Xiao-Yun, H. Long, S. Tian-Xiu, D. Shi-Hua, H.A.N. Lin-Cai, ZBAS on the structure and dielectric property of BaAl2Si2O8. J. Inorg. Mater. (2018). https://doi.org/10.15541/jim20170509

    Article  Google Scholar 

  15. C. Li, S. Ding, T. Song, Y. Zhang, H. Zhu, Structure and microwave dielectric properties of BaAl2−2xLi2xSi2O8–2x ceramics. Ceram. Int. 47(4), 4895–4904 (2021). https://doi.org/10.1016/j.ceramint.2020.10.062

    Article  CAS  Google Scholar 

  16. Y. He, X. Wei, G. He, Y. Wu, X. Chen, H. Zhou, Sintering behavior, phase composition, microstructure, and dielectric properties of low-permittivity alkaline earth silicate Sr3MgSi2O8 ceramics. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09310-6

    Article  Google Scholar 

  17. H.-H. Guo, M.-S. Fu, D. Zhou, C. Du, P.-J. Wang, L.-X. Pang, W.-F. Liu, A.S.B. Sombra, J.-Z. Su, Design of a high-efficiency and -gain antenna using novel low-loss, temperature-stable Li2Ti1–x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Appl. Mater. Interfaces. 13(1), 912–923 (2021). https://doi.org/10.1021/acsami.0c18836

    Article  CAS  Google Scholar 

  18. S.-Z. Hao, D. Zhou, F. Hussain, W.-F. Liu, J.-Z. Su, D.-W. Wang, Q.-P. Wang, Z.-M. Qi, C. Singh, S. Trukhanov, Structure, spectral analysis and microwave dielectric properties of novel x(NaBi)0.5MoO4-(1–x)Bi2/3MoO4 (x=0.2 similar to 0.8) ceramics with low sintering temperatures. J. Eur. Ceram. Soc. 40(10), 3569–3576 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.03.074

    Article  CAS  Google Scholar 

  19. H. Li, C. Cai, Q. Xiang, B. Tang, S. Yu, J. Xiao, H. Luo, S. Zhang, Raman, complex chemical bond and structural studies of novel CaMg1–x(Mn1/2Zn1/2)xSi2O6 (x=0–0.1) ceramics. Ceram. Int. 45(45), 23157–23163 (2019). https://doi.org/10.1016/j.ceramint.2019.08.010

    Article  CAS  Google Scholar 

  20. S.-Z. Hao, D. Zhou, F. Hussain, J.-Z. Su, W.-F. Liu, D.-W. Wang, Q.-P. Wang, Z.-M. Qi, Novel scheelite-type Ca0.55(Nd1–xBix)0.3MoO4 (0.2 ≤ x ≤ 0.95) microwave dielectric ceramics with low sintering temperature. J. Am. Ceram. Soc. 103(12), 7259–7266 (2020). https://doi.org/10.1111/jace.17378

    Article  CAS  Google Scholar 

  21. F. Huang, H. Su, Y. Li, H. Zhang, X. Tang, Low-temperature sintering and microwave dielectric properties of CaMg1−xLi2xSi2O6 (x = 0–0.3) ceramics. J. Adv. Ceram. 9(4), 471–480 (2020). https://doi.org/10.1007/s40145-020-0390-9

    Article  CAS  Google Scholar 

  22. S. Liu, B. Tang, M. Zhou, P. Zhao, Q. Xiang, X. Zhang, Z. Fang, S. Zhang, Microwave dielectric characteristics of high permittivity Ca0.35Li0.25Nd0.35Ti1–x(Zn1/3Ta2/3)xO3 ceramics (x = 0.00–0.12). Ceram. Int. 45(7), 8600–8606 (2019). https://doi.org/10.1016/j.ceramint.2019.01.179

    Article  CAS  Google Scholar 

  23. W. Liu, R. Zuo, Low temperature fired Ln2Zr3(MoO4)9 (Ln=Sm, Nd) microwave dielectric ceramics. Ceram. Int. 43(18), 17229–17232 (2017). https://doi.org/10.1016/j.ceramint.2017.09.083

    Article  CAS  Google Scholar 

  24. W. Fang, Y. Tang, J. Chen, J. Li, L. Fang, Relationship between the structure and microwave dielectric properties of garnet ceramics Ca3B2GeV2O12 (B = Mg, Mn). Ceram. Int. 48(3), 4318–4323 (2022). https://doi.org/10.1016/j.ceramint.2021.10.226

    Article  CAS  Google Scholar 

  25. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993). https://doi.org/10.1063/1.353856

    Article  CAS  Google Scholar 

  26. F. Wu, D. Zhou, C. Du, D.-M. Xu, R.-T. Li, Z.-Q. Shi, M.A. Darwish, T. Zhou, H. Jantunen, Design and fabrication of a satellite communication dielectric resonator antenna with novel low loss and temperature-stabilized (Sm1–xCax) (Nb1–xMox)O4 (x = 0.15–0.7) microwave ceramics. Chem. Mater. 35(1), 104–115 (2022). https://doi.org/10.1021/acs.chemmater.2c02663

    Article  CAS  Google Scholar 

  27. W. Yu, J. Lv, F. Shi, K. Song, W. Lei, H. Zhou, Z.-M. Qi, J. Wang, Lattice vibrational characteristics, crystal structure, and dielectric properties of single-phase Sr(Mg1/2Mo1/2)O3 microwave dielectric ceramic. J. Mater. Sci.: Mater. Electron. 32(13), 17191–17199 (2021). https://doi.org/10.1007/s10854-021-06182-0

    Article  CAS  Google Scholar 

  28. P. Zhang, H. Li, X. Chen, X. Zhang, H. Yang, C. Li, S. Zhang, Influence of Re-ions with different ionic radius in Ba12ReNb9O36 on crystal structure and microwave dielectric properties. J. Materiomics 8(1), 104–112 (2022). https://doi.org/10.1016/j.jmat.2021.05.001

    Article  Google Scholar 

  29. X. Zhou, L. Liu, J. Sun, N. Zhang, H. Sun, H. Wu, W. Tao, Effects of (Mg1/3Sb2/3)4+ substitution on the structure and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. J. Adv. Ceram. 10(4), 778–789 (2021). https://doi.org/10.1007/s40145-021-0472-3

    Article  CAS  Google Scholar 

  30. J. Li, Y. Tang, Z. Zhang, W. Fang, L. Ao, A. Yang, L. Liu, L. Fang, Two novel garnet Sr3B2Ge3O12 (B = Yb, Ho) microwave dielectric ceramics with low permittivity and high Q. J. Eur. Ceram. Soc. 41(2), 1317–1323 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.018

    Article  CAS  Google Scholar 

  31. N.E. Brese, M. O’Keeffe, Bond-valence parameters for solids. Acta Cryst. 47, 192–197 (1991)

    Article  Google Scholar 

  32. M.G. Mason, S.T. Lee, G. Apai, R.F. Davis, D.A. Shirley, A. Franciosi, J.H. Weaver, Particle-size-induced valence changes in samarium clusters. Phys. Rev. Lett. 47(10), 730–733 (1981). https://doi.org/10.1103/PhysRevLett.47.730

    Article  CAS  Google Scholar 

  33. K. Liu, C. Liu, J. Li, L. Jin, H. Zhang, Relationship between structure and properties of microwave dielectric ceramic Li(1+x)2MgTi3O8 based on Li non-stoichiometry. J. Materiomics 9(2), 279–288 (2023). https://doi.org/10.1016/j.jmat.2022.10.006

    Article  Google Scholar 

  34. C. Li, S. Ding, Y. Zhang, H. Zhu, T. Song, Effects of Ni2+ substitution on the crystal structure, bond valence, and microwave dielectric properties of BaAl2–2xNi2xSi2O8–x ceramics. J. Eur. Ceram. Soc. 41(4), 2610–2616 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.12.011

    Article  CAS  Google Scholar 

  35. K. Cheng, C. Li, C. Yin, Y. Tang, Y. Sun, L. Fang, Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3–xSrx(VO4)2 solid solutions. J. Eur. Ceram. Soc. 39(13), 3738–3743 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.05.030

    Article  CAS  Google Scholar 

  36. X. Yan, S. Ding, Y. Zhang, T. Song, L. Huang, X. Zhang, Structure and microwave dielectric properties of BaAl2−2x(CuSi)xSi2O8 ceramics. J. Mater. Sci. 31(3), 2591–2597 (2020). https://doi.org/10.1007/s10854-019-02798-5

    Article  CAS  Google Scholar 

  37. P. Zhang, Y. Zhao, W. Haitao, Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1–xAx)2O8 (A = Ta, Sb) ceramics. Dalton Trans. 44(38), 16684–16693 (2015). https://doi.org/10.1039/c5dt02164b

    Article  CAS  Google Scholar 

  38. W.-S. Xia, L.-X. Li, P.-F. Ning, Q.-W. Liao, W.K. Wong-Ng, Relationship between bond ionicity, lattice energy, and microwave dielectric properties of Zn(Ta1−xNbx)2O6 ceramics. J. Am. Ceram. Soc. 95(8), 2587–2592 (2012). https://doi.org/10.1111/j.1551-2916.2012.05231.x

    Article  CAS  Google Scholar 

  39. X.-Q. Song, W. Lei, M.-Q. Xie, J. Li, X.-C. Wang, W.-Z. Lu, Sintering behaviour, lattice energy and microwave dielectric properties of melilite-type BaCo2Si2O7 ceramics. Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab4f10

    Article  Google Scholar 

  40. M. Xiao, S. He, J. Meng, P. Zhang, Bond ionicity, lattice energy, bond energy and the microwave dielectric properties of non-stoichiometric MgZrNb2+xO8+2.5x ceramics. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122412

    Article  Google Scholar 

  41. Y. Zhang, X. Li, S. Ding, T. Song, Z. Yin, J. Dan, Crystal structure and microwave dielectric properties of Li-modified BaSi2O5 ceramics. J. Market. Res. 22, 2792–2805 (2023). https://doi.org/10.1016/j.jmrt.2022.12.132

    Article  CAS  Google Scholar 

  42. Y. Zhang, X. Jiang, X. Guo, S. Ding, T. Song, High-Q×f value and temperature stable MgZrTa2O8 ceramics by Li heterovalent substitution. J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.169043

    Article  Google Scholar 

  43. Y. Lai, H. Su, G. Wang, X. Tang, X. Huang, X. Liang, H. Zhang, Y. Li, K. Huang, X.R. Wang, Low-temperature sintering of microwave ceramics with high Qf values through LiF addition. J. Am. Ceram. Soc. (2018). https://doi.org/10.1111/jace.16086

    Article  Google Scholar 

  44. K. Du, C.Z. Yin, Y.B. Guo, X.C. Wang, W.Z. Lu, S.W. Ta, C.Y. Hu, W. Lei, The relationship between crystal structure and modified microwave dielectric properties of Ca3SnSi2–xGexO9 ceramics. J. Am. Ceram. Soc. 105(2), 1253–1264 (2021). https://doi.org/10.1111/jace.18174

    Article  CAS  Google Scholar 

  45. J. Zhang, J. Li, Y. Sun, L. Fang, Densification, microwave dielectric properties and rattling effect of LiYbO2 ceramics with low ε and anomalous positive τ. J. Eur. Ceram. Soc. 42(16), 7455–7460 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.09.010

    Article  CAS  Google Scholar 

  46. K. Xiao, C. Li, Y. Tang, Y. Tian, C. Yin, J. Chen, J. Li, L. Duan, H. Xiang, L. Fang, (1–x)Li4WO5-xLiF: a novel oxyfluoride system and their microwave dielectric properties. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155320

    Article  Google Scholar 

  47. T. Hong, Y. Hu, S. Bao, C. Luo, L. Ai, P. Jiang, J. Chen, Z. Duan, Low-temperature sintering and microwave dielectric properties of CaMoO4 ceramics. J. Electron. Mater. 48(2), 972–976 (2018). https://doi.org/10.1007/s11664-018-6807-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (Nos. 61761015), the Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011, 2018GXNSFFA050001), and the High-Level Innovation Team and Outstanding Scholar Program of Guangxi Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YH, XW, WL, YW, JY, XC, and HZ. The first draft of the manuscript was written by YH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiuli Chen or Huanfu Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wei, X., Luo, W. et al. Effects of Li substitution on the sintering behavior, lattice vibration, bond covalence and dielectric properties of SrMgGe2O6 ceramics. J Mater Sci: Mater Electron 34, 1435 (2023). https://doi.org/10.1007/s10854-023-10787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10787-y

Navigation