Skip to main content
Log in

Enhanced comprehensive energy storage properties in NaNbO3-based relaxor antiferroelectric via MnO2 modification

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The MnO2 is generally used as a sintering aid to improve sintering quality and breakdown electric field of ceramic capacitors, however, few studies were conducted to provide a guidance for the appropriate amount of MnO2 additive that should be added. In this work, various contents of MnO2 were added into 0.84NaNbO3-0.16CaTiO3 to systematically study its effect. The phase structure, dielectric behavior, microstructure, and so forth demonstrate that an appropriate MnO2 additive can stabilize antiferroelectric phase, optimize microstructure, and increase breakdown electric field. The 1.5 mol% MnO2 doped sample exhibits excellent comprehensive energy storage performance with an ultrahigh recoverable energy storage density of 5.8 J/cm3, good efficiency of 81%, splendid frequency and temperature stabilities, and outstanding charge-discharge properties. This work provides a promising energy storage material and a design concept based on MnO2 modification, which will contribute to the development and application of NN-based dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science. 313, 334–336 (2006). https://doi.org/10.1126/science.1127798

    Article  CAS  Google Scholar 

  2. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29(20), 1601727 (2017). https://doi.org/10.1002/adma.201601727

    Article  CAS  Google Scholar 

  3. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005

    Article  CAS  Google Scholar 

  4. X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3(01), 1330001 (2013). https://doi.org/10.1142/s2010135x13300016

    Article  Google Scholar 

  5. A. Mishra, B. Majumdar, R. Ranjan, A complex lead-free (na, Bi, Ba) (Ti, Fe)O3 single phase perovskite ceramic with a high energy-density and high discharge-efficiency for solid state capacitor applications. J. Eur. Ceram. Soc. 37, 2379–2384 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.036

    Article  CAS  Google Scholar 

  6. A. Khesro, F.A. Khan, R. Muhammad, A. Ali, M. Khan, D. Wang, Energy storage performance of Nd3+-doped BiFeO3-BaTiO3-based lead-free ceramics. Ceram. Int. 48, 29938–29943 (2022). https://doi.org/10.1016/j.ceramint.2022.06.260

    Article  CAS  Google Scholar 

  7. N. Luo, K. Han, M.J. Cabral, X. Liao, S. Zhang, C. Liao, G. Zhang, X. Chen, Q. Feng, J.F. Li, Y. Wei, Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat. Commun. 11, 4824 (2020). https://doi.org/10.1038/s41467-020-18665-5

    Article  CAS  Google Scholar 

  8. A. Xie, R. Zuo, Z. Qiao, Z. Fu, T. Hu, L. Fei, NaNbO3–(Bi0.5Li0.5)TiO3 lead‐free relaxor ferroelectric capacitors with superior energy‐storage performances via multiple synergistic design.  Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202101378

    Article  Google Scholar 

  9. Z. Che, L. Ma, G. Luo, C. Xu, Z. Cen, Q. Feng, X. Chen, K. Ren, N. Luo, Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107484

    Article  Google Scholar 

  10. Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D.O. Alikin, V.Y. Shur, Y. Feng, Z. Xu, X. Wei, Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104264

    Article  Google Scholar 

  11. R. Muhammad, A. Ali, J. Camargo, M. Castro, W. Lei, K. Song, D. Wang, Enhanced thermal stability in dielectric properties of NaNbO3-modified BaTiO3–BiMg1/2Ti1/2O3 ceramics for X9R-MLCC applications. Crystals (2022). https://doi.org/10.3390/cryst12020141

    Article  Google Scholar 

  12. D. Fu, T. Arioka, H. Taniguchi, T. Taniyama, M. Itoh, Ferroelectricity and electromechanical coupling in (1-x)AgNbO3-xNaNbO3 solid solutions. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3609234

    Article  Google Scholar 

  13. S. Lanfredi, L. Dessemond, A.C. Martins, Rodrigues, Dense ceramics of NaNbO3 produced from powders prepared by a new chemical route. J. Eur. Ceram. Soc. 20, 983–990 (2000). https://doi.org/10.1016/s0955-2219(99)00223-x

    Article  CAS  Google Scholar 

  14. F. Gao, C.-S. Zhang, X.-C. Liu, L.-H. Cheng, C.-S. Tian, Microstructure and piezoelectric properties of textured (Na0.84K0.16)0.5Bi0.5TiO3 lead-free ceramics. J. Eur. Ceram. Soc. 27, 3453–3458 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.01.015

    Article  CAS  Google Scholar 

  15. A. Hussain, S. Nawaz, N. Jabeen, R. Zafar, M.A. Qaiser, Z. Abbas, F. Ahmed, M.U. Khan, M. Waseem, S. Aslam, Enhanced ferroelectric and piezoelectric response by MnO2 added Bi0.5(K0.2Na0.8)0.5TiOceramics. J. Solid State Chem. (2022). https://doi.org/10.1016/j.jssc.2021.122716

    Article  Google Scholar 

  16. J.-H. Jeon, Mechanochemical synthesis and mechanochemical activation-assisted synthesis of alkaline niobate-based lead-free piezoceramic powders. Curr. Opin. Chem. Eng. 3, 30–35 (2014). https://doi.org/10.1016/j.coche.2013.10.005

    Article  Google Scholar 

  17. L. Chao, Y. Hou, M. Zheng, Y. Yue, M. Zhu, NaNbO3 nanoparticles: rapid mechanochemical synthesis and high densification behavior. J. Alloys Compd. 695, 3331–3338 (2017). https://doi.org/10.1016/j.jallcom.2016.12.036

    Article  CAS  Google Scholar 

  18. X. Su, G. Bai, Y. Jia, Z. Wang, Y. Hu, X. Yan, J. Xie, Flash sintering of sodium niobate ceramics. Mater. Lett. 235, 15–18 (2019). https://doi.org/10.1016/j.matlet.2018.09.167

    Article  CAS  Google Scholar 

  19. Z.-G. Liu, J.-H. Ouyang, Y. Zhou, Sintering and electrical conductivity of the GdSmZr2O7 ceramic with and without ZnO sintering aid. J. Power Sources 243, 836–840 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.093

    Article  CAS  Google Scholar 

  20. D.-H. Kim, J. Park, T.-G. Lee, S.-H. Cho, S.-J. Park, K.-T. Lee, J.-H. Kim, S. Nahm, Effect of Li2O on the defect polarization in CuO-added (K0.9Na0.1)NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 100, 5193–5201 (2017). https://doi.org/10.1111/jace.15047

    Article  CAS  Google Scholar 

  21. A. Jain, Y.G. Wang, N. Wang, F.L. Wang, Critical role of CuO doping on energy storage performance and electromechanical properties of Ba0.8Sr0.1Ca0.1Ti0.9Zr0.1O3 ceramics. Ceram. Int. 46, 18800–18812 (2020). https://doi.org/10.1016/j.ceramint.2020.04.198

    Article  CAS  Google Scholar 

  22. Y. Wan, Y. Li, Q. Li, W. Zhou, Q. Zheng, X. Wu, C. Xu, B. Zhu, D. Lin, J. Jones, Microstructure, ferroelectric, piezoelectric, and Ferromagnetic Properties of Sc-Modified BiFeO3-BaTiO3 Multiferroic Ceramics with MnO2 Addition. J. Am. Ceram. Soc. 97, 1809–1818 (2014). https://doi.org/10.1111/jace.12827

    Article  CAS  Google Scholar 

  23. H. Yang, H. Qi, R. Zuo, Enhanced breakdown strength and energy storage density in a new BiFeO3-based ternary lead-free relaxor ferroelectric ceramic. J. Eur. Ceram. Soc. 39, 2673–2679 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.001

    Article  CAS  Google Scholar 

  24. Y. Yin, J.-R. Yu, Y.-C. Tang, A.-Z. Song, H. Liu, D. Yang, J.-F. Li, L. Zhao, B.-P. Zhang, Enhanced energy storage properties and antiferroelectric stability of Mn-doped NaNbO3-CaHfO3 lead-free ceramics: regulating phase structure and tolerance factor. J. Materiomics. (2021). https://doi.org/10.1016/j.jmat.2021.11.013

    Article  Google Scholar 

  25. G. Li, L. Zheng, Q. Yin, B. Jiang, W. Cao, Microstructure and ferroelectric properties of MnO2-doped bismuth-layer (ca, Sr)Bi4Ti4O15 ceramics. J. Appl. Phys. (2005). https://doi.org/10.1063/1.2058174

    Article  Google Scholar 

  26. A. Peláiz Barranco, F. Calderón Piñar, O.P.M. Pérez Martínez, E. Torres, García, Effects of MnO2 additive on the properties of PbZrO3-PbTiO3-PbCu1/4Nb3/4O3 ferroelectric ceramic system. J. Eur. Ceram. Soc. 21, 523–529 (2001). https://doi.org/10.1016/s0955-2219(00)00216-8

    Article  Google Scholar 

  27. X. Wang, M. Gu, B. Yang, S. Zhu, W. Cao, Hall effect and dielectric properties of Mn-doped barium titanate. Microelectron. Eng. 66, 855–859 (2003). https://doi.org/10.1016/s0167-9317(02)01011-0

    Article  CAS  Google Scholar 

  28. A. Xie, J. Fu, R. Zuo, C. Zhou, Z. Qiao, T. Li, S. Zhang, NaNbO3-CaTiO3 lead-free relaxor antiferroelectric ceramics featuring giant energy density, high energy efficiency and power density. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.132534

    Article  Google Scholar 

  29. S. Tripathi, D. Pandey, S.K. Mishra, P.S.R. Krishna, Morphotropic phase-boundary-like characteristic in a lead-free and non-ferroelectric(1 – x)NaNbO3-xCaTiO3system. Phys. Rev. B (2008). https://doi.org/10.1103/PhysRevB.77.052104

    Article  Google Scholar 

  30. B.H. Toby, R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2012). https://doi.org/10.1154/1.2179804

    Article  CAS  Google Scholar 

  31. Y. Zhang, J.-F. Li, Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J. Mater. Chem. C 7, 4284–4303 (2019). https://doi.org/10.1039/c9tc00476a

    Article  CAS  Google Scholar 

  32. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976). https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  33. H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Ultrahigh energy-storage density in NaNbO3-Based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201903877

    Article  Google Scholar 

  34. S.K. Mishra, R. Mittal, V.Y. Pomjakushin, S.L. Chaplot, Phase stability and structural temperature dependence in sodium niobate: a high-resolution powder neutron diffraction study. Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.83.134105

    Article  Google Scholar 

  35. M.D. Peel, S.P. Thompson, A. Daoud-Aladine, S.E. Ashbrook, P. Lightfoot, New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3. Inorg. Chem. 51, 6876–6889 (2012). https://doi.org/10.1021/ic3006585

    Article  CAS  Google Scholar 

  36. H. Guo, H. Shimizu, C.A. Randall, Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4930067

    Article  Google Scholar 

  37. Y. Hou, M. Zhu, F. Gao, H. Wang, B. Wang, H. Yan, C. Tian, Effect of MnO2Addition on the structure and Electrical Properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 Ceramics. J. Am. Ceram. Soc. 87, 847–850 (2004). https://doi.org/10.1111/j.1551-2916.2004.00847.x

    Article  CAS  Google Scholar 

  38. W. Weibull, Applicability, J. Appl. Mech. 18, 293–297 (1951). https://doi.org/10.1115/1.4010337

    Article  Google Scholar 

  39. J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Correlation between dielectric breakdown strength and interface polarization in barium strontium titanate glass ceramics. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3293456

    Article  Google Scholar 

  40. C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction inBi:SrTiO3. Phys. Rev. B 62, 228–236 (2000). https://doi.org/10.1103/PhysRevB.62.228

    Article  Google Scholar 

  41. J. Shi, X. Liu, F. Zhu, W. Tian, Y. Xia, T. Li, R. Rao, T. Zhang, L. Liu, Oxygen vacancy migration and its lattice structural origin in A-site non-stoichiometric bismuth sodium titanate perovskites. J. Materiomics. 8, 719–729 (2022). https://doi.org/10.1016/j.jmat.2021.09.008

    Article  Google Scholar 

  42. L. Liu, Y. Huang, Y. Li, M. Wu, L. Fang, C. Hu, Y. Wang, Oxygen-vacancy-related high-temperature dielectric relaxation and electrical conduction in 0.95K0.5Na0.5NbO3−0.05BaZrO3 ceramic. Phys. B 407, 136–139 (2012). https://doi.org/10.1016/j.physb.2011.10.003

    Article  CAS  Google Scholar 

  43. N. Masó, A.R. West, Electrical Properties of Ca-Doped BiFeO3 Ceramics: from p-Type semiconduction to oxide-ion conduction. Chem. Mater. 24, 2127–2132 (2012). https://doi.org/10.1021/cm300683e

    Article  CAS  Google Scholar 

  44. T. Pan, J. Zhang, Z.N. Guan, Y. Yan, J. Ma, X. Li, S. Guo, J. Wang, Y. Wang, Enhanced energy density and efficiency in lead-free sodium niobate‐based relaxor antiferroelectric ceramics for electrostatic energy storage application. Adv. Electron. Mater (2022). https://doi.org/10.1002/aelm.202200793

    Article  Google Scholar 

  45. H. Qi, W. Li, L. Wang, L. Chen, H. Liu, S. Deng, J. Chen, Large (anti) ferrodistortive NaNbO3-based lead-free relaxors: polar nanoregions embedded in ordered oxygen octahedral tilt matrix. Mater. Today (2022). https://doi.org/10.1016/j.mattod.2022.09.003

    Article  Google Scholar 

  46. L. Yang, X. Kong, Z. Cheng, S. Zhang, Enhanced energy storage performance of sodium niobate-based relaxor dielectrics by a ramp-to-spike sintering profile. ACS Appl. Mater. Interfaces 12, 32834–32841 (2020). https://doi.org/10.1021/acsami.0c08737

    Article  CAS  Google Scholar 

  47. A. Tian, R. Zuo, H. Qi, M. Shi, Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J. Mater. Chem. A 8, 8352–8359 (2020). https://doi.org/10.1039/d0ta02285c

    Article  CAS  Google Scholar 

  48. X. Dong, X. Li, H. Chen, Q. Dong, J. Wang, X. Wang, Y. Pan, X. Chen, H. Zhou, Realizing enhanced energy storage and hardness performances in 0.90NaNbO3– 0.10Bi(Zn0.5Sn0.5)O3 ceramics. J. Adv. Ceram 11, 729–741 (2022). https://doi.org/10.1007/s40145-022-0566-6

    Article  CAS  Google Scholar 

  49. Y. Fan, Z. Zhou, R. Liang, X. Dong, Designing novel lead-free NaNbO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications via relaxor strategy. J. Eur. Ceram. Soc. 39, 4770–4777 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.021

    Article  CAS  Google Scholar 

  50. N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei, Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 7, 14118–14128 (2019). https://doi.org/10.1039/c9ta02053e

    Article  CAS  Google Scholar 

  51. Z. Ling, J. Ding, W. Miao, J. Liu, J. Zhao, L. Tang, Y. Shen, Y. Chen, P. Li, Z. Pan, MnO2-modified lead-free NBT-based relaxor ferroelectric ceramics with improved energy storage performances. Ceram. Int. 47, 22065–22072 (2021). https://doi.org/10.1016/j.ceramint.2021.04.227

    Article  CAS  Google Scholar 

  52. S. Bian, Z. Yue, Y. Shi, J. Zhang, W. Feng, Ultrahigh energy storage density and charge-discharge performance in novel sodium bismuth titanate‐based ceramics. J. Am. Ceram. Soc. 104, 936–947 (2020). https://doi.org/10.1111/jace.17486

    Article  CAS  Google Scholar 

  53. G. Liu, Y. Li, B. Guo, M. Tang, Q. Li, J. Dong, L. Yu, K. Yu, Y. Yan, D. Wang, L. Zhang, H. Zhang, Z. He, L. Jin, Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125625

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52072080) and Guangxi Natural Science Fund for Distinguished Young Scholars (Grant No. 2022GXNSFFA035034).

Funding

Funding was provided by the National Natural Science Foundation of China (Grant No. 52072080) and Guangxi Natural Science Fund for Distinguished Young Scholars (Grant No. 2022GXNSFFA035034).

Author information

Authors and Affiliations

Authors

Contributions

GL: Conceptualization, Formal analysis, Investigation, Data curation, Writing—original draft, Writing—review & editing. DZ: Conceptualization, Formal analysis, Investigation, Data curation, Writing—review & editing. KY, LM, ZC, CX, QF, XC: Formal analysis, Investigation. ZC: Formal analysis, Investigation, Writing—review & editing. NL: Conceptualization, Resources, Writing—review & editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Zhenyong Y. Cen or Nengneng N. Luo.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Zhuang, D., Yang, K. et al. Enhanced comprehensive energy storage properties in NaNbO3-based relaxor antiferroelectric via MnO2 modification. J Mater Sci: Mater Electron 34, 1444 (2023). https://doi.org/10.1007/s10854-023-10784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10784-1

Navigation