Skip to main content
Log in

Effect of ambient gas on grain growth of CZTS layer: study on device efficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Higher grain size is one of the important requirements for any absorber material to achieve a high efficiency solar cell. Among various other parameters, thermal conductivity of the ambient gas used during annealing is also expected to change the grain size of the thin film material. In this work, a ~ 1 micron thick CZTS layer was prepared on Mo coated soda lime glass substrate using co-sputtering of precursor followed by sulfurization (annealing in sulphur vapour and Argon/Nitrogen gas). Annealing environment was changed by varying the gas (N2/Ar) during the sulfurization process to study the effect of thermal conductivity of gas on CZTS layer and cell performance. Cells prepared using nitrogen gas sulfurization is found to be more efficient as compared to argon gas sulfurization. This has been discussed as a function of higher thermal conductivity of sulfurizing gas which led to the larger grain size. Reduction in grain boundaries due to larger grain size help in more charge collection and hence improving device properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovoltaics Res. Appl. 28, 629 (2020)

    Article  Google Scholar 

  2. T.J. Huang, X. Yin, G. Qi, H. Gong, Phys. Status Solidi - Rapid Res. Lett. 8, 735 (2014)

    Article  CAS  Google Scholar 

  3. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express. 1, 0412011 (2008)

    Article  Google Scholar 

  4. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells. 95, 1421 (2011)

    Article  CAS  Google Scholar 

  5. H. Nazem, H.P. Dizaj, N.E. Gorji, Superlattices Microstruct. 128, 421 (2019)

    Article  CAS  Google Scholar 

  6. Y. Wei, D. Zhuang, M. Zhao, Q. Gong, R. Sun, G. Ren, Y. Wu, L. Zhang, X. Lyu, X. Peng, J. Wei, J. Alloys Compd. 773, 689 (2019)

    Article  CAS  Google Scholar 

  7. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, K.M.A. Saron, M.A. Farrukh, N.K. Allam, J. Mater. Sci. Mater. Electron. 26, 222 (2015)

    Article  CAS  Google Scholar 

  8. S. Agrawal, C. Balasubramanian, S. Mukherjee, R. Kanani, K.K. Madapu, S. Dhara, Thin Solid Films. 741, 139029 (2022)

    Article  CAS  Google Scholar 

  9. W.M. Hlaing Oo, J.L. Johnson, A. Bhatia, E.A. Lund, M.M. Nowell, M.A. Scarpulla, J. Electron. Mater. 40, 2214 (2011)

    Article  CAS  Google Scholar 

  10. T.S. Reddy, M.C.S. Kumar, RSC Adv. 6, 95680 (2016)

    Article  CAS  Google Scholar 

  11. S.A. Vanalakar, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, K.V. Gurav, P.S. Patil, J.H. Kim, Ceram. Int. 40, 15097 (2014)

    Article  CAS  Google Scholar 

  12. T. Hoshino, K. Mito, A. Nagashima, M. Miyata, Int. J. Thermophys. 7, 647 (1986)

    Article  CAS  Google Scholar 

  13. M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodríguez, Appl. Phys. Lett. 104, 021901 (2014)

    Article  Google Scholar 

  14. K. Zhang, Z. Su, L. Zhao, C. Yan, F. Liu, H. Cui, X. Hao, Y. Liu, Appl. Phys. Lett. 104, 141101 (2014)

    Article  Google Scholar 

  15. R. Nakamura, K. Tanaka, H. Uchiki, K. Jimbo, T. Washio, H. Katagiri, Jpn J. Appl. Phys. 53, 02BC10 (2014)

    Article  CAS  Google Scholar 

  16. R.B.V. Chalapathy, G.S. Jung, B.T. Ahn, Sol. Energy Mater. Sol. Cells. 95, 3216 (2011)

    Article  CAS  Google Scholar 

  17. C.Y. Peng, T.P. Dhakal, S. Garner, P. Cimo, S. Lu, C.R. Westgate, Thin Solid Films. 562, 574 (2014)

    Article  CAS  Google Scholar 

  18. S.R. Meher, L. Balakrishnan, Z.C. Alex, Superlattices Microstruct. 100, 703 (2016)

    Article  CAS  Google Scholar 

  19. S. Chander, M.S. Dhaka, Sol. Energy. 150, 577 (2017)

    Article  CAS  Google Scholar 

  20. J.T. Heath, J.D. Cohen, W.N. Shafarman, J. Appl. Phys. 95, 1000 (2004)

    Article  CAS  Google Scholar 

  21. S. Amiri, S. Dehghani, J. Electron. Mater. 49, 2164 (2020)

    Article  CAS  Google Scholar 

  22. S.S. Hegedus, W.N. Shafarman, Prog. Photovoltaics Res. Appl. 12, 155 (2004)

    Article  CAS  Google Scholar 

  23. R. Carron, C. Andres, E. Avancini, T. Feurer, S. Nishiwaki, S. Pisoni, F. Fu, M. Lingg, Y.E. Romanyuk, S. Buecheler, A.N. Tiwari, Thin Solid Films. 669, 482 (2019)

    Article  CAS  Google Scholar 

  24. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films. 517, 2455 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was partially supported by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India through grant no. EMR/2016/00657. Authors would like to thank Dr. Jinto Thomas from Institute for Plasma Research (IPR), India, for Raman measurements, Mr. Vyom Desai from IPR, India for XRD measurements and Ms. Rinkal Kanani from IPR, India for preparation of cross section samples.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SA. The first draft of the manuscript was written by SA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sagar Agrawal.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Balasubramanian, C. & Mukherjee, S. Effect of ambient gas on grain growth of CZTS layer: study on device efficiency. J Mater Sci: Mater Electron 34, 1387 (2023). https://doi.org/10.1007/s10854-023-10776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10776-1

Navigation