Skip to main content
Log in

Annealing evolution to MgCl2 treated CdSe absorber layers for solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CdCl2 treatment is well-known crucial step to considerably modify the physical properties of absorber layer and power conversion efficiency of associated Cd-based solar cell devices. However, the CdCl2 is a carcinogenic, water-soluble compound and entails more safety procedures to use as activation agent on absorber and window layers together with associated interface or junction to the device. Present meticulous study focuses on impact of MgCl2 annealing treatment on physical properties of thermally deposited CdSe films in order to find appropriate alternative to conventionally toxic CdCl2 treatment. All the films are crystallized in mixture of cubic and hexagonal phases where crystallinity of films is found to improve along with grain growth upon MgCl2 treatment. Optical energy band gap of treated films lied within range 1.60–1.70 eV and films showed two photoluminescence peaks at ~ 625 nm and ~ 675 nm which are related to deep level defects and near band emission of CdSe  system, respectively. Surface topographical analysis showed variation in average surface roughness from 32 nm to 126 nm and grain size from 39 nm to 60 nm with MgCl2 activation treatment and found maximum for 300 °C activated films. The scrutinized results reveal that CdSe films activated with MgCl2 at 300 °C could be suitable alternative absorber layer to the Cd-based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data presented in the manuscript could be obtained from the authors as per guidelines of the journal.

References

  1. B. Bagheri, R. Kottokkaran, L.P. Poly, B. Reichert, S. Sharikadze, M. Noack, V. Dalal, AIP Adv. 9, 125012 (2019)

    Article  Google Scholar 

  2. N. Spalatu, M. Krunks, J. Hiie, Thin Solid Films 633, 106–111 (2017)

    Article  CAS  Google Scholar 

  3. S.L. Patel, A. Purohit, S. Chander, M.D. Kannan, M.S. Dhaka, Curr. Appl. Phys. 18, 803–809 (2018)

    Article  Google Scholar 

  4. P.K. Kalita, B.K. Sarma, H.L. Das, Indian J. Phys. 77A, 225–231 (2003)

    CAS  Google Scholar 

  5. A. Smida, Z. Zaaboub, N.B.H. Mohamed, M. Hassen, F. Laater, H. Maaref, H. Ezzaouia, J. Lumin. 194, 686–691 (2018)

    Article  CAS  Google Scholar 

  6. B. Bagheri, R. Kottokkaran, L.P. Poly, S. Sharikadze, B. Reichert, M. Noack, V. Dalal, IEEE 46th PVSC (2019) 1822–1825.

  7. R. Sahebi, M.R. Roknabadi, M. Behdani, Optik 204, 164204 (2020)

    Article  CAS  Google Scholar 

  8. H. Bayramoglu, A. Peksoz, Mater. Sci. Semicond. Process 90, 13–19 (2019)

    Article  CAS  Google Scholar 

  9. K. Li, X. Lin, B. Song, R. Kondrotas, C. Wang, Y. Lu, X. Yang, C. Chen, J. Tang, Front. Optoelectron. 14, 482–490 (2021)

    Article  Google Scholar 

  10. S. Lalitha, S.Zh. Karazhanov, P. Ravindran, S. Senthilarasu, R. Sathyamoorthy, J. Janabergenov, Phys. B: Condens. Matter. 387, 227–238 (2007)

    Article  CAS  Google Scholar 

  11. S. Kumari, G. Chasta, R. Sharma, N. Kumari, M.S. Dhaka, Physica B 649, 414422 (2023)

    Article  CAS  Google Scholar 

  12. S. Kumari, D. Suthar, G. Chasta, Himanshu, N. Kumari, M.S. Dhaka, Chem. Phys. Lett. 803, 139868 (2022).

  13. T. Fiducia, A. Howkins, A. Abbas, B. Mendis, A. Munshi, K. Barth, W. Sampath, J. Walls, Sol. Energy Mater. Sol Cells 238, 111595 (2022)

    Article  CAS  Google Scholar 

  14. X. Zheng, D. Kuciauskas, J. Moseley, E. Colegrove, D.S. Albin, H. Moutinho, J.N. Duenow, T. Ablekim, S.P. Harvey, A. Ferguson, W.K. Metzger, APL Mater. 7, 071112–071121 (2019)

    Article  Google Scholar 

  15. T.A.M. Fiducia, B.G. Mendis, K. Li, C.R.M. Grovenor, A.H. Munshi, K. Barth, W.S. Sampath, L.D. Wright, A. Abbas, J.W. Bowers, J.M. Walls, Nat. Energy 4, 504–511 (2019)

    Article  CAS  Google Scholar 

  16. J.D. Poplawsky, W. Guo, N. Paudel, A. Ng, K. More, D. Leonard, Y. Yan, Nat. Commun. 7, 12537 (2016)

    Article  CAS  Google Scholar 

  17. J.D. Major, R.E. Treharne, L.J. Phillips, K. Durose, Nature 511, 334–337 (2014)

    Article  CAS  Google Scholar 

  18. T. Sivaraman, A.R. Balu, V.S. Nagarethinam, Mater. Sci. Semicond. Process. 27, 915–923 (2014)

    Article  CAS  Google Scholar 

  19. S. Kumari, D. Suthar, Himanshu, M.D. Kannan, N. Kumari, M.S. Dhaka, Inorg. Chem. Commun. 144, 109893 (2022).

  20. S. Kumari, G. Chasta, Himanshu, N. Kumari, M.S. Dhaka, Phase Transit. 96, 16–28 (2023).

  21. S. Kumari, D. Suthar, Himanshu, N. Kumari, M.S. Dhaka, J. Electron. Mater. 52, 384–393 (2023).

  22. S. Kumari, S. Chuhadiya, D. Suthar, Himanshu, N. Kumari, M.S. Dhaka, J. Mater. Sci. 57, 19466–19489 (2022).

  23. D. Menossi, E. Artegiani, A. Salavei, S.D. Mare, A. Romeo, Thin Solid Films 633, 97–100 (2017)

    Article  CAS  Google Scholar 

  24. G. Angeles-Ordóñez, E. Regalado-Pérez, M.G. Reyes-Banda, N.R. Mathews, X. Mathew, Sol. Energy Mater. Sol Cells 160, 454–462 (2017)

    Article  Google Scholar 

  25. P. Chauhan, A.B. Patel, S. Narayan, J. Prasad, C.K. Sumesh, G.K. Solanki, K.D. Patel, S.S. Soni, P.K. Jha, V.M. Pathak, V. Patel, J. Alloys Compd. 862, 158016 (2021)

    Article  CAS  Google Scholar 

  26. M.N. Borah, S. Chaliha, Mater. Today: Proceed. 46, 5777–5780 (2021)

    CAS  Google Scholar 

  27. S. Thanikaikarasan, R. Perumal, J. Venkatamuthukumar, J. Mater. Sci.: Mater. Electron. 30, 1500–1509 (2019)

    CAS  Google Scholar 

  28. T.P. Nguyen, T.T. Ha, T.T. Nguyen, N.P. Ho, T.D. Huynh, Q.V. Lam, Electrochim. Acta 282, 16e23 (2018).

  29. M. Hassen, R. Riahi, F. Laatar, H. Ezzaouia, Surf. Interfaces 18, 100408 (2020)

    Article  CAS  Google Scholar 

  30. A. Romeo, D.L. Batzner, H. Zogg, A.N. Tiwari, Thin Solid Films 361–362, 420–425 (2000)

    Article  Google Scholar 

  31. R.B. Kale, S.Y. Lu, J. Alloys compd. 640, 504–510 (2015)

    Article  CAS  Google Scholar 

  32. Z. Fang, X.C. Wang, H.C. Wu, C.Z. Zhao, Int. J. Photoenergy 2011, 297350 (2011).

  33. Suryanarayan and M.G. Norton, X-Ray Diffraction, Plenum Press, New York, 1998.

  34. G.K. Williamson, R.E. Smallman, Phil. Mag. Lett. 1, 34–36 (1956)

    Article  CAS  Google Scholar 

  35. N. Spalatu, J. Hiie, V. Valdna, M. Caraman, N. Maticiuc, V. Mikli, T. Potlog, M. Krunks, V. Lughi, Energy Procedia 44, 85–95 (2014)

    Article  CAS  Google Scholar 

  36. S. Mathuri, K. Ramamurthi, and R. Ramesh Babu. Thin Solid Films 660, 23–30 (2018)

    Article  CAS  Google Scholar 

  37. O. Toma, L. Ion, M. Girtan, S. Antohe, Sol. Energy 108, 51–60 (2014)

    Article  CAS  Google Scholar 

  38. H.H. Yudar, S. Pat, S. Korkmaz, S. Ozen, V. Senay, J Mater Sci Mater Electron 28, 2833–2837 (2017)

    Article  CAS  Google Scholar 

  39. A. Alasvand, H. Kafashan, J. Alloys Compd. 817, 152711 (2020)

    Article  CAS  Google Scholar 

  40. J. Tauc (ed.), Amorphous and Liquid Semiconductors (Springer, Boston, 1974)

    Google Scholar 

  41. S.S. Priya, B.L. Shree, P.T. Ranjani, P. Karthick, K. Jeyadheepan, M. Sridharan, Mater. Today: Proc. 3, 1487–1493 (2016)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the DST-FIST through Department of Physics, Mohanlal Sukhadia University, Udaipur for XRD and AFM experimental facilities. The Ministry of Education, Government of India and Ministry of Higher Education, Government of Rajasthan are also acknowledged for partial recurring expenses and PL facility via RUSA 2.0 Research and Innovation projects.

Author information

Authors and Affiliations

Authors

Contributions

Suman Kumari: Methodology, Investigation, Formal analysis, Writing – original draft. G. Chasta: Formal analysis, Writing – original draft. Himanshu: Formal analysis, Writing – original draft. N. Kumari: Investigation, Formal analysis, Supervision, Writing – original draft. M.S. Dhaka: Conceptualization, Supervision, Writing – original draft.

Corresponding author

Correspondence to M. S. Dhaka.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Chasta, G., Himanshu et al. Annealing evolution to MgCl2 treated CdSe absorber layers for solar cells. J Mater Sci: Mater Electron 34, 1420 (2023). https://doi.org/10.1007/s10854-023-10775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10775-2

Navigation