Skip to main content
Log in

SrCo0.8Fe0.1Ga0.1O3−δ (SCFG) cathodes incorporated with Sm0.2Ce0.8O1.9 (SDC) for IT-SOFCs application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new type of electronic-oxygen ion conductor Sm0.2Ce0.8O1.9 (SDC) modified SrCo0.8Fe0.1Ga0.1O3−δ (SCFG) cathode is produced using a simple solution infiltration as IT-SOFC cathodes. Likewise, the SCFG cathode is mixed with the SDC powder to prepare conventional composite cathodes. The prepared cathodes are assessed in regard to their thermal, structural, electrical, and electrochemical features. Thermal expansion of the composite SCFG-SDC cathodes is well-compatible with that of the SDC electrolyte. For the SCFG cathode, peak conductivity reached 315.6 S cm−1 at 600 °C. The polarization resistance of blank SCFG electrode attain 0.5 Ω cm2 at 800 °C, which is higher than those of 0.38, 0.16, and 0.32 Ω cm2 for 10, 30, and 50% wt SDC-SCFG mixed composite electrodes, respectively. The polarization resistances for 7, 14, and 21 wt% SDC-infiltrated SCFG cathodes are measured to be 0.25, 0.1, and 0.14 Ω cm2 at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H. Ming Wu, F. Cai, N. Jin, J. Sun, L. Xu, X. Zhang, S. Han, X. Wang, L. Su, Wen, L.W.L. Zhang, Assessment of cobalt-free ferrite-based perovskite Ln0.5Sr0.5Fe0.9Mo0.1O3–δ (ln = lanthanide) as cathodes for IT-SOFCs. J. Eur. Ceram. Soc. 41, 2682–2690 (2021)

    Google Scholar 

  2. M.B. Hanif, S. Rauf, M. Motola, Z.U.D. Babar, C.-J. Li, C.-X. Li, Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications. Mater. Res. Bull. 146, 111612 (2022)

    CAS  Google Scholar 

  3. W. Xia, Q. Li, L. Sun, L. Huo, H. Zhao, Electrochemical performance of Sn-doped Bi0.5Sr0.5FeO3–δ perovskite as cathode electrocatalyst for solid oxide fuel cells. J. Alloys Compd. 835, 155406 (2020)

    CAS  Google Scholar 

  4. J. Cheng, W. Qian, P. Wang, C. Tian, A high activity cathode of Sm0.2Ce0.8O1.9 decorated Mn1.5Co1.5O4 using ion impregnation technique within a solid oxide fuel cell system. Solid State Sci. 131, 106962 (2022)

    CAS  Google Scholar 

  5. W. Ni, T. Zhu, X. Chen, Q. Zhong, W. Ma, Stable, efficient and cost-competitive Ni-substituted Sr(Ti, Fe)O3 cathode for solid oxide fuel cell: effect of A-site deficiency. J. Power Sour. 451, 227762–227768 (2020)

    CAS  Google Scholar 

  6. L. Gao, M. Zhu, T. Xia, Q. Li, T. Li, H. Zhao, Ni-doped BaFeO3–δ perovskite oxide as highly active cathode electrocatalyst for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 289, 428–436 (2018)

    CAS  Google Scholar 

  7. C. Setevich, S. Larrondo, F. Prado, Infiltrated La0.5Ba0.5CoO3–δ in La0.8Sr0.2Ga0.8Mg0.2O2.8 scaffolds as cathode material for IT-SOFC. Ceram. Int. 44, 16851–16858 (2018)

    CAS  Google Scholar 

  8. M. Shumail Farhan, A.H. Mohsin, R. Raza, B. Anwar, R. Ahmad, Raza, Co-doped cerium oxide Fe0.25–xMnxCe0.75O2–δ as a composite cathode material for IT-SOFC. J. Alloys Compd. 906, 164319 (2022)

    Google Scholar 

  9. H. Li, C. Zhuang, Q. Li, C. Sun, H. Zhao, Electrochemical investigation of Pr2CuO4-based composite cathode for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 688, 972–977 (2016)

    CAS  Google Scholar 

  10. J. Chuangang Yao, S. Yang, J. Chen, K. Meng, Q. Cai, Zhang, Copper doped SrFe0.9–xCuxW0.1O3–δ (x = 0-0.3) perovskites as cathode materials for IT-SOFCs. J. Alloys Compd. 868, 159127 (2021)

    Google Scholar 

  11. M. Muhammad Iqbal, R. Muneer, M. Raza, AsgharJamal, Preparation of composite cathode material by using the extracted lead (Pb) of waste lead acid battery for LT-SOFC. Ceram. Int. 48, 19681–19687 (2022)

    Google Scholar 

  12. J. Fangjun Jin, Y. Liu, T. Shen, He, Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δSm0.2Ce0.8O1.9 (ln = pr and nd) composite cathodes for IT SOFCs. J. Alloys Compd. 685, 483–491 (2016)

    Google Scholar 

  13. I.T. Bello, S. Zhai, Q. He, Q. Xu, M. Ni, Scientometric review of advancements in the development of high-performance cathode for low and intermediate temperature solid oxide fuel cells: three decades in retrospect. Int. J. Hydrog. Energy 46, 26518–26536 (2021)

    CAS  Google Scholar 

  14. C. Xu, K. Sun, X. Yang, M. Ma, R. Ren, J. Qiao, Z. Wang, S. Zhen, S. Wang, Highly active and CO2-tolerant Sr2Fe1.3Ga0.2Mo0.5O6–δ cathode for intermediate-temperature solid oxide fuel cells. J. Power Sour. 450, 227722 (2020)

    CAS  Google Scholar 

  15. W. Zhang, Y. Hang, Recent progress in design and fabrication of SOFC cathodes for efficient catalytic oxygen reduction. Catal. Today 409, 71–86 (2023)

    CAS  Google Scholar 

  16. Y. Yang, R. Li, Y. Wu, Y. Chu, D. Tian, X. Lu, L. Guo, B. Lin, P. Feng, Y. Ling, Highly active self-assembled hybrid catalyst with multiphase heterointerfaces to accelerate cathodic oxygen reduction of intermediate-temperature solid oxide fuel cells. Ceram. Int. 46, 9661–9668 (2020)

    CAS  Google Scholar 

  17. A. Francesca Zurlo, V.M. Iannaci, Sglavo, Elisabetta Di Bartolomeo, copper-based electrodes for IT-SOFC. J. Eur. Ceram. Soc. 39, 17–20 (2019)

    Google Scholar 

  18. L. Li, F. Jin, Y. Shen, T. He, Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate temperature solid oxide fuel cells. Electrochim. Acta 182, 682–692 (2015)

    CAS  Google Scholar 

  19. I.D. Seymour, A. Tarancon, A. Chroneos, D. Parfitt, J.A. Kilner, R.W. Grimes, Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics. 216, 41–43 (2012)

    CAS  Google Scholar 

  20. B. Alexander Chroneos, A. Yildiz, D. Tarancon, J.A. Parfitt, Kilner, Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ. Sci. 4, 2774–2789 (2011)

    Google Scholar 

  21. J. Bai, Z. Han, D. Zhou, X. Zhu, N. Wang, R. Chen, J. He, W. Yan, Preparation of Pr2NiO4+δ–La0.6Sr0.4CoO3–δ as a high-performance cathode material for SOFC by an impregnation method. Int. J. Hydrogen Energy 48(15), 6076–87 (2023)

    CAS  Google Scholar 

  22. E.M. Paola Costamagna, W. Sala, M.L. Zhang, P. Traulsen, Holtappels, Electrochemical impedance spectroscopy of La0.6Sr0.4Co0.2Fe0.8O3–δ nanofiber cathodes for intermediate temperature-solid oxide fuel cell applications: a case study for the ‘depressed’ or ‘fractal’ gerischer element. Electrochim. Acta 319, 657–671 (2019)

    Google Scholar 

  23. S.B. Adler, Mechanism and kinetics of oxygen reduction on porous La1 – xSrxCoO3–δ electrodes. Solid State Ionics. 111, 125–134 (1998)

    CAS  Google Scholar 

  24. M. Kim, D.H. Kim, G.D. Han, H.J. Choi, H.R. Choi, J.H. Shim, Lanthanum strontium cobaltite-infiltrated lanthanum strontium cobalt ferrite cathodes fabricated by inkjet printing for high-performance solid oxide fuel cells. J. Alloys Compd. 84, 155806 (2020)

    Google Scholar 

  25. O. Jaroslaw Sar, J. Celikbilek, L. Villanova, C.L. Dessemond, E. Martin, Djurado, Three dimensional analysis of Ce0.9Gd0.1O1.95–La0.6Sr0.4Co0.2Fe0.8O3–δ oxygen electrode for solid oxide cells. J. Eur. Ceram. Soc. 35, 4497–4505 (2015)

    Google Scholar 

  26. X. Meng, S. Wang, S. Lü, W.Y. William, Y. Sui, L. Yang, M. Wei, J. Cao, J. Yang, Structural, thermal and electrochemical properties of SrCo0.8Fe0.1Ga0.1O3–δ cathode material for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 727, 27–33 (2017)

    CAS  Google Scholar 

  27. X. Meng, Y. Shen, M. Xie, Y. Yin, N. Yang, Z.F. Ma, J.C. da Costa, S. Liu, Novel solid oxide cells with SrCo0.8Fe0.1Ga0.1O3–δ oxygen electrode for flexible power generation and hydrogen production. J. Power Sour. 306, 226–232 (2016)

    CAS  Google Scholar 

  28. N.-T. Yang, Y. Kathiraser, S. Kawi, A new asymmetric SrCo0.8Fe0.1Ga0.1O3–δ perovskite hollow fiber membrane for stable oxygen permeability under reducing condition. J. Membr. Sci. 428, 78–85 (2013)

    CAS  Google Scholar 

  29. E. Özden Çelikbilek, D. Siebert, C.L. Jauffrès, E. Martin, Djurado, Influence of sintering temperature on morphology and electrochemical performance of LSCF/GDC composite films as efficient cathode for SOFC. Electrochim. Acta 246, 1248–1258 (2017)

    Google Scholar 

  30. A.J. Abd Aziz, N.A. Baharuddin, M.R. Somalu, A. Muchtar, Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceram. Int. 46, 23314–23325 (2020)

    CAS  Google Scholar 

  31. C. Fu, K. Sun, N. Zhang, X. Chen, D. Zhou, Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC. Electrochim. Acta 52, 4589–4594 (2007)

    CAS  Google Scholar 

  32. S. Guo, F. Puleo, L. Wang, H. Wu, F. Leonarda, Liotta, La0.6Sr0.4Co0.2Fe0.79M0.01O3–δ (M = ni, pd) perovskites synthesized by citrate-EDTA method: oxygen vacancies effect on electrochemical properties. Adv. Powder Technol. 29, 2804–2812 (2018)

    CAS  Google Scholar 

  33. J.A. Francisco, D.A. Loureiro, R.M. Macedo, M.Ã.R. Nascimento, P.F. Cesáriod, João, A.A. Grilo, P. Yaremchenko, Duncan, Fagg, Cathodic polarisation of composite LSCF-SDC IT-SOFC electrode synthesized by one-step microwave self-assisted combustion. J. Eur. Ceram. Soc. 39, 1846–1853 (2019)

    Google Scholar 

  34. S.P. Jiang, Y. Leng, S.H. Chan, K.A. Khor, Development of (La, Sr) MnO3-based cathodes for intermediate temperature solid oxide fuel cells. Electrochem. Solid State Lett. 6, 67–70 (2003)

    Google Scholar 

  35. Y. Wang, H. Zhang, F. Chen, C. Xia, Electrochemical characteristics of nano-structured PrBaCo2O5 + x cathodes fabricated with ion impregnation process. J. Power Sour. 203, 34–41 (2012)

    CAS  Google Scholar 

  36. D. Chen, R. Ran, Z. Shao, Assessment of PrBaCo2O5+δ+Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. J. Power Sour. 195, 7187–7195 (2010)

    CAS  Google Scholar 

  37. B. Li, S. Liu, X. Liu, S. Qi, J. Yu, H. Wang, W. Su, Electrical properties of SDC-BCY composite electrolytes for intermediate temperature solid oxide fuel cell. Int. J. Hydrog. Energy 39, 14376–14380 (2014)

    CAS  Google Scholar 

  38. M.-H. Ko, J.-H. Hwang, Application of sonochemical processing to LSC (La0.6Sr0.4CoO3)/SDC (Sm2O3-doped CeO2) composite cathodes for solid oxide fuel cells involving CeO2-based electrolytes. Ceram. Int. 42, 11548–11553 (2016)

    CAS  Google Scholar 

  39. Z.Q. Deng, W.S. Yang, W. Liu, C.S. Chen, Relationship between transport properties and phase transformations in mixed-conducting oxides. J. Solid State Chem. 179, 362–369 (2006)

    CAS  Google Scholar 

  40. J.H. Kuo, H.U. Anderson, D.M. Sparlin, Oxidation-reduction behavior of undoped and sr doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J. Solid State Chem. 87, 55–63 (1990)

    CAS  Google Scholar 

  41. J. Junichiro Mizusaki, T. Tabuchi, S. Matsuura, K. Yamauchi, Fueki, Electrical-conductivity and Seebeck coefficient of nonstoichiometric La1 – xSrxCoO3–δ. J. Electrochem. Soc. 136, 2082–2088 (1989)

    Google Scholar 

  42. L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1 – xSrxCo1–yFeyO3. Part 1. The system La0.8Sr0.2Co1–yFeyO3. Solid State Ionics. 76, 259–271 (1995)

    CAS  Google Scholar 

  43. San Ping, Jiang, Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—a review. Int. J. Hydrog. Energy 44, 7448–7493 (2019)

    Google Scholar 

  44. Y.I.N. Shilong, L.I. Mengnan, Z.E.N.G. Yanwei, L.I. Chuanming, C.H.E.N. Xiaowei, ZhupengYE, study of Sm0.2Ce0.8O1.9 (SDC) electrolyte prepared by a simple modified solid-state method. J. Rare Earths. 32, 767–771 (2014)

    Google Scholar 

  45. P. Raghvendra, Singh, Electrical conductivity of YSZ-SDC composite solid electrolyte synthesized via glycine-nitrate method. Ceram. Int. 43, 11692–11698 (2017)

    CAS  Google Scholar 

  46. A.B.D. Hamimah, A. Rahman, N. Muchtar, H. Muhamad, Abdullah, Structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3–δ-SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells. Ceram. Int. 38, 1571–1576 (2012)

    Google Scholar 

  47. X. Zhang, J. Li, L. Wang, X. Guo, H. Sun, H. Zhang, Qiangqiang, Hu, Improved electrochemical performance of Bi doped La0.8Sr0.2FeO3–δ nanofiber cathode for IT-SOFCs via electrospinning. Ceram. Int. 47, 534–540 (2021)

    CAS  Google Scholar 

  48. L. Qiong Nian, B. Zhao, B. He, R. Lin, G. Peng, X. Meng, Liu, Layered SmBaCuCoO5+δ and SmBaCuFeO5+δ perovskite oxides as cathode materials for proton-conducting SOFCs. J. Alloys Compd. 492, 291–294 (2010)

    Google Scholar 

  49. Y. Chen, H. Cai, J. Xu, L. Qu, L. Zhang, Electrochemical characterization of Fe-rich BaFe0.7Co0.2Nb0.1O3–δ as cathode material for IT-SOFC. Solid State Sci. 97, 106005 (2019)

    CAS  Google Scholar 

  50. X. Ding, W. Zhu, X. Gao, G. Hua, J. Li, Enhanced SOFC cathode performance by infiltrating Ba0.5Sr0.5Co0.8Fe0.2O3–δ nanoparticles for intermediate temperature solid oxide fuel cells. Fuel Process. Technol. 135, 14–19 (2015)

    CAS  Google Scholar 

  51. M.H. Marzieh Kiani, Paydar, Improved electrochemical performance of Sm0.2Ce0.8O1.9 (SDC) nanoparticles decorated SrCo0.8Fe0.1Ga0.1O3–δ (SCFG) Fiber, fabricated by electrospinning, for IT-SOFCs cathode application. Materials 16, 399 (2023). https://doi.org/10.3390/ma16010399

    Article  CAS  Google Scholar 

  52. M.R. Cesário, D.A. Macedo, A.E. Martinelli, R.M. Nascimento, B.S. Barros, D.M. Melo, Synthesis, structure and electrochemical performance of cobaltite-based composite cathodes for IT-SOFC. Crystal Res. Technol. 47, 723–730 (2012)

    Google Scholar 

  53. H. Kazuki Shimura, K. Nishino, E. Kakinuma, Manuel, H. Brito, Uchida, Effect of samaria-doped ceria (SDC) interlayer on the performance of La0.6Sr0.4Co0.2Fe0.8O3–δ/SDC composite oxygen electrode for reversible solid oxide fuel cells. Electrochim. Acta 225, 114–120 (2017)

    Google Scholar 

  54. Y. Tao, H. Nishino, S. Ashidate, H. Kokubo, M. Watanabe, H. Uchida, Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs. Electrochim. Acta 54, 3309–3315 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by Shiraz University and the National Iranian Copper Industry Company, which are greatly acknowledged.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MK. The first draft of the manuscript was written by MK under supervision of MHP. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Hossein Paydar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, M., Paydar, M.H. SrCo0.8Fe0.1Ga0.1O3−δ (SCFG) cathodes incorporated with Sm0.2Ce0.8O1.9 (SDC) for IT-SOFCs application. J Mater Sci: Mater Electron 34, 1366 (2023). https://doi.org/10.1007/s10854-023-10773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10773-4

Navigation