Skip to main content

Advertisement

Log in

Microstructure and dielectric properties of (Ba, Sr)TiO3 ceramics with alkali-free glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Ba, Sr)TiO3 ceramic attracts much interest due to its adjustable dielectric performance and outstanding dielectric properties. Alkali-free multi-component glasses with their high dielectric breakdown strength are considered as one of the promising candidates for next-generation high energy density storage capacitor applications. In the present study, oxalate co-precipitation method has been applied to obtain (Ba, Sr)TiO3 nanopowders, which were used to fabricate composite with Ba–B–Al–Si glass and (Ba, Sr)TiO3 ceramic. The parameters, such as the sintering temperature, dielectric constant, and breakdown strength were studied. The results indicated that the sintering temperature and the dielectric constant decreased with increasing the glass content, while the breakdown strength increased firstly and then decreased due to the modification of the microstructure. The effect of different alkali-free glass additions on the sintering temperature and dielectric properties of (Ba, Sr)TiO3 were studied. The composite with 13.5 vol.% Ba–B–Zn glass phase was sintered at 920 °C and showed optimal electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D: Appl. Phys. 29, 253–258 (1996)

    Article  CAS  Google Scholar 

  2. X. Wei, C. Zhao, T. Zheng, X. Lv, L. Zhang, B. Li, J. Wu, Understanding the enhanced electrocaloric effect in BaTiO3-based ferroelectrics at critical state. Acta Mater. (2022). https://doi.org/10.1016/j.actamat.2022.117735

    Article  Google Scholar 

  3. R. Yin, J. Li, X. Su, S. Qin, C. Yu, Y. Hou, C. Liu, Y. Su, L. Qiao, T. Lookman, Y. Bai, Emergent enhanced electrocaloric effect within wide temperature span in laminated composite ceramics. Adv. Funct. Mater. 32, 2108182 (2022)

    Article  CAS  Google Scholar 

  4. Y. Wang, Z.-Y. Shen, Y.-M. Li, Z.-M. Wang, W.-Q. Luo, Y. Hong, Optimization of energy storage density and efficiency in BaxSr1−xTiO3 (x ≤ 0.4) paraelectric ceramics. Ceram. Int. 41, 8252–8256 (2015)

    Article  CAS  Google Scholar 

  5. M.-. Li, M.-. Xu, Preparation of cauliflower-like shaped Ba0.6Sr0.4TiO3 powders by modified oxalate co-precipitation method. J. Alloys Compd. 474, 311–315 (2009)

    Article  CAS  Google Scholar 

  6. Z.H. Yao, Z. Song, H. Hao, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29, 1601727 (2017)

    Article  Google Scholar 

  7. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  8. X. Fan, J. Wang, H. Yuan, Z. Zheng, J. Zhang, K. Zhu, Multi-scale synergic optimization strategy for dielectric energy storage ceramics. J. Adv. Ceram. 12, 649–680 (2023)

    Article  CAS  Google Scholar 

  9. X. Jiang, H. Hao, S. Zhang, J. Lv, M. Cao, Z. Yao, H. Liu, Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc. 39, 1103–1109 (2019)

    Article  CAS  Google Scholar 

  10. Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.-J. Wang, Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy. 58, 768–777 (2019)

    Article  CAS  Google Scholar 

  11. X. Zhu, P. Shi, R. Kang, S. Li, Z. Wang, W. Qiao, X. Zhang, L. He, Q. Liu, X. Lou, Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning. Chem. Eng. J. 420, 129808 (2021)

    Article  CAS  Google Scholar 

  12. Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc. 34, 1209–1217 (2014)

    Article  CAS  Google Scholar 

  13. T. Hayashi, H. Shinozaki, K. Sasaki, Preparation and properties of (Ba0·7Sr0·3)TiO3 powders and thin films using precursor solutions formed from alkoxide-hydroxide. J. Eur. Ceram. Soc. 19, 1011–1016 (1999)

    Article  CAS  Google Scholar 

  14. A. Young, G. Hilmas, S.C. Zhang, R.W. Schwartz, Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90, 1504–1510 (2007)

    Article  CAS  Google Scholar 

  15. W. Ma, P. Fan, D. Salamon, S. Kongparakul, C. Samart, T. Zhang, G. Zhang, S. Jiang, J.-J. Chang, H. Zhang, Fine-grained BNT-based lead-free composite ceramics with high energy-storage density. Ceram. Int. 45, 19895–19901 (2019)

    Article  CAS  Google Scholar 

  16. H. Cheng, X. Zhai, J. Ouyang, L. Zheng, N. Luo, J. Liu, H. Zhu, Y. Wang, L. Hao, K. Wang, Achieving a high energy storage density in Ag(Nb, Ta)O3> antiferroelectric films via nanograin engineering. J. Adv. Ceram. 12, 196–206 (2023)

    Article  CAS  Google Scholar 

  17. J. Li, Z. Shen, X. Chen, S. Yang, W. Zhou, M. Wang, L. Wang, Q. Kou, Y. Liu, Q. Li, Z. Xu, Y. Chang, S. Zhang, F. Li, Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 19, 999–1005 (2020)

    Article  CAS  Google Scholar 

  18. X. Su, B.C. Riggs, M. Tomozawa, J.K. Nelson, D.B. Chrisey, Preparation of BaTiO3/low melting glass core–shell nanoparticles for energy storage capacitor applications. J. Mater. Chem. A 2, 18087–18096 (2014)

    Article  CAS  Google Scholar 

  19. T. Li, H. Segawa, N. Ohashi, Sintering behavior and dielectric properties of BaTiO3 added with Ba–OBi2O3–B2O3 glass phase. Ceram. Int. 44, 13004–13010 (2018)

    Article  CAS  Google Scholar 

  20. B.R. Priya Rani, M.T. Sebastian, The effect of glass addition on the dielectric properties of barium strontium titanate. J. Mater. Sci.: Mater. Electron. 19, 39–44 (2008)

    CAS  Google Scholar 

  21. N.J. Smith, B. Rangarajan, M.T. Lanagan, C.G. Pantano, Alkali-free glass as a high energy density dielectric material. Mater. Lett. 63, 1245–1248 (2009)

    Article  CAS  Google Scholar 

  22. J. Liu, J. Zhang, M. Wei, Z. Yao, H. Chen, C. Yang, Dielectric properties of manganese-doped TiO2 with different alkali-free glass contents for energy storage application. J. Mater. Sci.: Mater. Electron. 27, 7680–7684 (2016)

    CAS  Google Scholar 

  23. Y.J. Wu, Y.H. Huang, N. Wang, J. Li, M.S. Fu, X.M. Chen, Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J. Eur. Ceram. Soc. 37, 2099–2104 (2017)

    Article  CAS  Google Scholar 

  24. B. Rangarajan, T. Shrout, M. Lanagan, Ceramics, Crstallization kinetics and dielectric properties of fresnoite BaO–TiO2–SiO2 glass. J. Am. Ceram. Soc. 92, 2642–2647 (2009)

    Article  CAS  Google Scholar 

  25. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomie distance in halides and chaleogenides. Acta Cryst. 32, 751 (1976)

    Article  Google Scholar 

  26. X.W. Wang, B.H. Zhang, Y.C. Shi, Y.Y. Li, M. Manikandan, S.Y. Shang, J. Shang, Y.C. Hu, S.Q. Yin, Enhanced energy storage properties in Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with glass additives. J. Appl. Phys. 127, 074103 (2020)

    Article  CAS  Google Scholar 

  27. Z.-Y. Shen, Y. Wang, Y. Tang, Y. Yu, W.-Q. Luo, X. Wang, Y. Li, Z. Wang, F. Song, Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J. Materiomics. 5, 641–648 (2019)

    Article  Google Scholar 

  28. J. Tian, S. Wang, T. Jiang, K. Chen, J. Zhai, B. Shen, Dielectric characterization of a novel Bi2O3–Nb2O5–SiO2–Al2O3 glass-ceramic with excellent charge–discharge properties. J. Eur. Ceram. Soc. 39, 1164–1169 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120041, Grant No. 2022A1515010073).

Author information

Authors and Affiliations

Authors

Contributions

GD and HH contributed to writing—original draft preparation. ZY, MC, and HL contributed to review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hua Hao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, G., Hao, H., Yao, Z. et al. Microstructure and dielectric properties of (Ba, Sr)TiO3 ceramics with alkali-free glasses. J Mater Sci: Mater Electron 34, 1375 (2023). https://doi.org/10.1007/s10854-023-10767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10767-2

Navigation