Skip to main content

Advertisement

Log in

Air annealing evolution to physical characteristics of Cd0.85Zn0.15Te thin films: absorber layer applications to solar cell devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The II–VI ternary chalcogenide Cd1-xZnxTe is considered as a vital absorber material for the development of single as well as multi-junction solar cell devices since it not only overcomes the problem of appropriate contact which lacks in CdTe based devices but enables band gap tunability too. Also, plummeting the surface and native defects in Cd1-xZnxTe thin films is crucial for obtaining unadulterated and homogeneous films. Accordingly, presented work is endowed with significant insights on upshot of air annealing on physical properties of resistive heating based thermally evaporated Cd0.85Zn0.15Te thin films which are annealed at temperature 200 °C, 300 °C and 400 °C. Structural studies revealed the supremacy of (111) and (220) orientations of zinc blende cubic phased Cd0.85Zn0.15Te and grain growth with heat treatment. The direct optical energy band gap (Eg) is attained within range 1.62–1.89 eV. The current–voltage (I–V) measurements demonstrated Ohmic character of developed films and topographical features portrayed hill-like topographies. Surface morphological images divulged small-spherical shaped and large-stone shaped grains and compositional analysis depicted the presence of Cadmium, Zinc and Tellurium peaks validating the successful deposition of Cd0.85Zn0.15Te films. The attained results connote that suitable grain growth, highest absorbance and optimum energy band gap of 300 °C air annealed Cd0.85Zn0.15Te films make these fitting absorbers for the associated single junction and tandem solar cell devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available within the article and can be provided from the corresponding author on reasonable request as per journal guidelines.

References

  1. N. Kannan, D. Vakeesan, Renew. Sustain. Energy Rev. 62, 1092–1105 (2016). https://doi.org/10.1016/j.rser.2016.05.022

    Article  Google Scholar 

  2. P.P. Barker, J.M. Bing, IEEE Power Eng. Soc. Gener. Meet. (2005). https://doi.org/10.1109/PES.2005.1489304

    Article  Google Scholar 

  3. M.H. Alaaeddin, S.M. Sapuan, M.Y.M. Zuhri, E.S. Zainudin, F.M. Al-Oqla, Renew. Sustain. Energy Rev. 102, 318–332 (2019). https://doi.org/10.1016/j.rser.2018.12.026

    Article  CAS  Google Scholar 

  4. S.G. Kumar, K.S.R. Koteswara Rao, Energy Environ. Sci. 7, 45–102 (2014). https://doi.org/10.1039/c3ee41981a

    Article  CAS  Google Scholar 

  5. A.L. Fahrenbruch, Solar Cells 21, 399–412 (1987). https://doi.org/10.1016/0379-6787(87)90138-4

    Article  CAS  Google Scholar 

  6. D. Rioux, D.W. Niles, H. Höchst, J. Appl. Phys. 73(12), 8381–8385 (1993). https://doi.org/10.1063/1.353406

    Article  CAS  Google Scholar 

  7. D. Zeng, D. Guo, X. Rena, Thin Solid Films 768, 139685 (2023). https://doi.org/10.1016/j.tsf.2023.139685

    Article  CAS  Google Scholar 

  8. T. Li, Y. Shen, P. Sun, J. Huang, F. Gu, X. Liang, L. Wang, J. Min, Mater. Sci. Semicond. Process. 153, 107118 (2023). https://doi.org/10.1016/j.mssp.2022.107118

    Article  CAS  Google Scholar 

  9. N.B. Chaure, S. Chaure, R.K. Pandey, Electrochim. Acta 54(2), 296–304 (2008). https://doi.org/10.1016/j.electacta.2008.07.081

    Article  CAS  Google Scholar 

  10. J. Huang, L.J. Wang, K. Tang, R. Xu, J.J. Zhang, Y.B. Xia, X.G. Lu, Phys. Procedia 32, 161–164 (2012). https://doi.org/10.1016/j.phpro.2012.03.535

    Article  CAS  Google Scholar 

  11. X. Wan, Y. Li, T. Tan, Y. Liu, H. Wei, K. Cao, G. Zha, Materi. Sci. Semicond. Process. 153, 107158 (2023). https://doi.org/10.1016/j.mssp.2022.107158

    Article  CAS  Google Scholar 

  12. R. Chen, Y. Shen, T. Li, J. Huang, F. Gu, X. Liang, M. Cao, L. Wang, J. Min, Vacuum 193, 110484 (2021). https://doi.org/10.1016/j.vacuum.2021.110484

    Article  CAS  Google Scholar 

  13. I. Haider, B. Khan, M. Ali, A. Shuja, A.F. Qureshi, Z. Ali, Mater. Sci. Semicond. Process. 114, 105074 (2020). https://doi.org/10.1016/j.mssp.2020.105074

    Article  CAS  Google Scholar 

  14. M.A. Sayeed, H.K. Rouf, Surf. Interfaces 23, 100968 (2021). https://doi.org/10.1016/j.surfin.2021.100968

    Article  CAS  Google Scholar 

  15. S. Chander, A. Purohit, S.L. Patel, M.S. Dhaka, Physica E Low Dimens. Syst. Nanostruct. 89, 29–32 (2017). https://doi.org/10.1016/j.physe.2017.02.002

    Article  CAS  Google Scholar 

  16. X. Gao, X. Zhu, H. Sun, D. Yang, P. Wangyang, S. Zhu, J. Mater. Sci.: Mater. Electron. 28, 4467–4474 (2017). https://doi.org/10.1007/s10854-016-6079-8

    Article  CAS  Google Scholar 

  17. S. Seyedmohammadi, M.J. DiNezza, S. Liu, P. King, E.G. LeBlanc, X.H. Zhao, C. Campbell, T.H. Myers, Y.H. Zhang, R.J. Malik, J. Cryst. Growth 425, 181–185 (2015). https://doi.org/10.1016/j.jcrysgro.2015.02.055

    Article  CAS  Google Scholar 

  18. A. Aydinli, A. Compaan, G.C. Puente, A. Mason, Solid State Commun. 80(7), 465–468 (1991). https://doi.org/10.1016/0038-1098(91)90051-V

    Article  CAS  Google Scholar 

  19. R.G. Solanki, Indian J. Pure Appl. Phys. 48, 133–135 (2010)

    CAS  Google Scholar 

  20. I. Nasieka, L. Rashkovetskyi, O. Strilchuk, B. Danilchenko, Nucl. Inst. Methods Phys. Res. A 648(1), 290–292 (2011). https://doi.org/10.1016/j.nima.2011.06.040

    Article  CAS  Google Scholar 

  21. N.F. Patel, S.A. Bhakhar, H.S. Jagani, G.K. Solanki, P.M. Pataniya, Opt. Mater. 136, 113403 (2023). https://doi.org/10.1016/j.optmat.2022.113403

    Article  CAS  Google Scholar 

  22. M. Ali, S. Ahmed, F. Younus, Z. Ali, Radiat. Phys. Chem. 166, 108498 (2020). https://doi.org/10.1016/j.radphyschem.2019.108498

    Article  CAS  Google Scholar 

  23. G. Kartopu, Q. Fan, O. Oklobia, S.J.C. Irvine, Appl. Surf. Sci. 540, 148452 (2021). https://doi.org/10.1016/j.apsusc.2020.148452

    Article  CAS  Google Scholar 

  24. S. Chander, M.S. Dhaka, Thin Solid Films 625, 131–137 (2017). https://doi.org/10.1016/j.tsf.2017.01.052

    Article  CAS  Google Scholar 

  25. G. Rajesh, N. Muthukumarasamy, D. Velauthapillai, K. Mohanta, V. Ragavendran, S.K. Batabyal, Mater. Res. Express 5(2), 026412 (2018). https://doi.org/10.1088/2053-1591/aaad90

    Article  CAS  Google Scholar 

  26. M. Chakraborty, S. Bhattacharyya, Mater. Sci. Semicond. Process. 53, 47–55 (2016). https://doi.org/10.1016/j.mssp.2016.06.003

    Article  CAS  Google Scholar 

  27. K. Byrappa, T. Ohachi, Crystal Growth Technology, Chapter-17 “Crystal Growth of Gemstones” (William Andrew Inc., Norwich, 2003), pp.561–579

    Google Scholar 

  28. M. Kiani, E. Parsyanpour, F. Samavat, Int. J. Thin Films Sci. Technol. 9(1), 27–30 (2020). https://doi.org/10.18576/ijtfst/090104

    Article  Google Scholar 

  29. N.F. Patel, S.A. Bhakhar, G.K. Solanki, K.D. Patel, V.M. Pathak, P.M. Pataniya, Surf. Interfaces 32, 102157 (2022). https://doi.org/10.1016/j.surfin.2022.102157

    Article  CAS  Google Scholar 

  30. Y.V. Znamenshchykov, V.V. Kosyak, O.K. Kononov, I.O. Shpetnyi, V.I. Grebinaha, P.M. Fochuk, A.S. Opanasyuk, Vacuum 149, 270–278 (2018). https://doi.org/10.1016/j.vacuum.2018.01.010

    Article  CAS  Google Scholar 

  31. A. Arbaoui, A. Outzourhit, N. Achargui, H. Bellakhder, E.L. Ameziane, J.C. Bernede, Sol. Energy Mater. Sol. Cells 90(10), 1364–1370 (2006). https://doi.org/10.1016/j.solmat.2005.10.001

    Article  CAS  Google Scholar 

  32. E. Yilmaz, Energy Sour. Part A: Recover. Util. Environ. Eff. 34(4), 332–335 (2011). https://doi.org/10.1080/15567036.2010.490824

    Article  CAS  Google Scholar 

  33. E. Bacaksiz, B.M. Basol, M. Altunbas, V. Novruzov, E. Yanmaz, S. Nezir, Thin Solid Films 515(5), 3079–3084 (2007). https://doi.org/10.1016/j.tsf.2006.08.026

    Article  CAS  Google Scholar 

  34. R. Sharma, Himanshu, S.L. Patel, M.D. Kannan, M.S. Dhaka, Surf. Interfaces 33, 102204 (2022). https://doi.org/10.1016/j.surfin.2022.102204

    Article  CAS  Google Scholar 

  35. J. Bie, S. Wang, Y. Guan, X. Zhang, Y. Sun, C. Sun, K. Tang, J. Huang, M. Cao, J. Ling, K. Tan, Y. Shen, L. Wang, Energy Fuels 35(9), 8234–8245 (2021). https://doi.org/10.1021/acs.energyfuels.1c00356

    Article  CAS  Google Scholar 

  36. A.A. Ojo, I.M. Dharmadasa, Coatings 9(6), 370 (2019). https://doi.org/10.3390/coatings9060370

    Article  CAS  Google Scholar 

  37. K. John U, S. Mathew, J. Non-Cryst. Solids 577, 121321 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121321

  38. H. Zhou, D. Zeng, S. Pan, Nucl. Inst. Methods Phys. Res. A 698, 81–83 (2013). https://doi.org/10.1016/j.nima.2012.09.024

    Article  CAS  Google Scholar 

  39. A. Purohit, S. Chander, S.P. Nehra, M.S. Dhaka, Phys. E Low Dimens. Syst. Nanostruct. 69, 342–348 (2015). https://doi.org/10.1016/j.physe.2015.01.028

    Article  CAS  Google Scholar 

  40. M. El-Hagary, M. Emam-Ismail, E.R. Shaaban, A. Al-Rashidi, S. Althoyaib, Mater. Chem. Phys. 132(2–3), 581–590 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.072

    Article  CAS  Google Scholar 

  41. X. Gao, S. Zhu, X. Zhu, B. Zhao, H. Sun, D. Yang, P. Wangyang, J. Mater. Sci.: Mater. Electron. 29, 8313–8319 (2018). https://doi.org/10.1007/s10854-018-8840-7

    Article  CAS  Google Scholar 

  42. G. Zha, H. Zhou, J. Gao, T. Wang, W. Jie, Vacuum 86(3), 242–245 (2011). https://doi.org/10.1016/j.vacuum.2011.06.013

    Article  CAS  Google Scholar 

  43. X. Gao, H. Sun, D. Yang, P. Wangyang, C. Zhang, X. Zhu, Vacuum 183, 109855 (2021). https://doi.org/10.1016/j.vacuum.2020.109855

    Article  CAS  Google Scholar 

  44. K. Bashir, N. Mehboob, A. Ali, A. Zaman, M. Ashraf, M. Lal, K. Althubeiti, M. Mushtaq, Mater. Lett. 304, 130737 (2021). https://doi.org/10.1016/j.matlet.2021.130737

    Article  CAS  Google Scholar 

  45. Y. Li, Y. Wang, W. Zhang, K. Cao, Y. Li, G. Zha, T. Tan, Mater. Sci. Semicond. Process. 124, 105608 (2021). https://doi.org/10.1016/j.mssp.2020.105608

    Article  CAS  Google Scholar 

  46. M. Vuichyk, L. Rashkovetskyi, S. Lavoryk, P. Lytvyn, K. Svezhentsova, Phys. Chem. Solid State 22(4), 638–643 (2021). https://doi.org/10.15330/pcss.22.4.638-643

    Article  CAS  Google Scholar 

  47. F. Yang, J. Huang, T. Zou, K. Tang, Z. Zhang, Y. Ma, S. Gou, Y. Shen, L. Wang, Y. Lu, Surf. Coat. Technol. 357, 575–579 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.043

    Article  CAS  Google Scholar 

  48. S.N. Vidhya, O.N. Balasundaram, M. Chandramohan, Optik 126(24), 5460–5463 (2015). https://doi.org/10.1016/j.ijleo.2015.09.032

    Article  CAS  Google Scholar 

  49. A.E. Al-salami, A. Dahshan, E.R. Shaaban, Optik 150, 34–47 (2017). https://doi.org/10.1016/j.ijleo.2017.09.062

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are appreciative to the Department of Physics, Mohanlal Sukhadia University, Udaipur, Punjabi University, Patiala and PSG College of Technology, Coimbatore for undertaking experimentation and characterization. The Ministry of Education, Govt. of India and Ministry of Higher Education, Govt. of Rajasthan through RUSA 2.0 Research and Innovation project are accredited for monetary support for partial recurring expenses.

Funding

The Ministry of Education, Govt. of India and Ministry of Higher Education, Govt. of Rajasthan through RUSA 2.0 Research and Innovation project are accredited for monetary support for partial recurring expenses.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have significantly contributed in the present work and therefore, they are credited for this work. The author wise credit is as under: RS: Methodology, Formal analysis, Investigation, Writing—Original Draft. AS: Methodology, Writing—Original Draft. SC: Methodology, Writing—Original Draft. AT: Methodology, Writing—Original Draft. MDK: Methodology, Writing—Original Draft. MSD: Conceptualization, Writing—Original Draft, Supervision.

Corresponding author

Correspondence to Ritika Sharma.

Ethics declarations

Competing interests

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Sharma, A., Chuhadiya, S. et al. Air annealing evolution to physical characteristics of Cd0.85Zn0.15Te thin films: absorber layer applications to solar cell devices. J Mater Sci: Mater Electron 34, 1403 (2023). https://doi.org/10.1007/s10854-023-10759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10759-2

Navigation