Skip to main content
Log in

Effect of solution-processed Mg-doped ZnO electron transport layer on the photodetector properties of MAPbI3 thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solution-processed Mg-doped ZnO nanoparticles were synthesized by the precipitation method. Material formation and their crystal structure were confirmed by XRD and FTIR analysis of the materials. The optical properties of Mg-doped ZnO thin films were explored by the absorption and transmission spectra of the thin films. The band gap of the thin film increases with the increase of Mg concentration in ZnO. The electrical conductivity and the mobility of the Mg-doped thin films show a decreasing trend with the increase of Mg concentration in ZnO. The Mg-doped ZnO thin films were used as an electron transport layer in MAPbI3 perovskite photodetectors. The photodetectors show substantial responsivity in the wavelength range of 300 to 800 nm. The highest responsivity was observed in the UV and blue regions of light. The MAPbI3 photodetectors with the electron transport layer of Mg-doped ZnO thin films show responsivity more than 15 times in comparison to only ZnO thin film. Our studies demonstrate that the Mg-doped ZnO thin films form good energy levels alignments and interfaces for perovskite photoactive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [C.K.Suman], upon reasonable request.

References

  1. P.S. Shewale, Y.S. Yu, Structural, surface morphological and UV photodetection properties of pulsed laser deposited Mg-doped ZnO nanorods: effect of growth time. J. Alloy. Compd. 654, 79–86 (2016). https://doi.org/10.1016/j.jallcom.2015.09.048

    Article  CAS  Google Scholar 

  2. S. Vyas, A short review on properties and applications of Zinc Oxide based thin films and devices: ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors. Johnson Matthey Technol. Rev. 64(2), 202–218 (2020). https://doi.org/10.1595/205651320X15694993568524

    Article  CAS  Google Scholar 

  3. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 445(2), 263–267 (2003). https://doi.org/10.1016/S0040-6090(03)01158-1

    Article  CAS  Google Scholar 

  4. T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films 516(17), 5822–5828 (2008). https://doi.org/10.1016/j.tsf.2007.10.063

    Article  CAS  Google Scholar 

  5. M.-C. Jun, S.-U. Park, J.-H. Koh, Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Res. Lett. 7(1), 639 (2012). https://doi.org/10.1186/1556-276X-7-639

    Article  CAS  Google Scholar 

  6. S.-M. Park, T. Ikegami, K. Ebihara, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 513(1–2), 90–94 (2006). https://doi.org/10.1016/j.tsf.2006.01.051

    Article  CAS  Google Scholar 

  7. L.N. Balakrishnan, S. Gowrishankar, N. Gopalakrishnan, ${\rm NH}_{3}$ Sensing by $p$-ZnO Thin Films. IEEE Sens. J. 13(6), 2055–2060 (2013). https://doi.org/10.1109/JSEN.2013.2244592

    Article  CAS  Google Scholar 

  8. A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, K. Kalantar-zadeh, Characterization of ZnO Nanobelt-Based Gas Sensor for ${\rm H}_{2}$, ${\rm NO}_{2}$, and Hydrocarbon Sensing. IEEE Sensors J. 7(6), 919–924 (2007). https://doi.org/10.1109/JSEN.2007.895963

    Article  Google Scholar 

  9. S. Chou, L. Teoh, W. Lai, Y. Su, M. Hon, ZnO: Al thin film gas sensor for detection of ethanol vapor. Sensors 6(10), 1420–1427 (2006). https://doi.org/10.3390/s6101420

    Article  CAS  Google Scholar 

  10. Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoç, H.O. Everitt, Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films. Appl. Phys. Lett. 84(17), 3223–3225 (2004). https://doi.org/10.1063/1.1713034

    Article  CAS  Google Scholar 

  11. G.M. Ali, P. Chakrabarti, Performance of ZnO-based ultraviolet photodetectors under varying thermal treatment. IEEE Photonics J. 2(5), 784–793 (2010). https://doi.org/10.1109/JPHOT.2010.2054070

    Article  Google Scholar 

  12. W. Ouyang, F. Teng, J. He, X. Fang, Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 29(9), 1807672 (2019). https://doi.org/10.1002/adfm.201807672

    Article  CAS  Google Scholar 

  13. P.S. Shewale, Y.S. Yu, The effects of pulse repetition rate on the structural, surface morphological and UV photodetection properties of pulsed laser deposited Mg-doped ZnO nanorods. Ceram. Int. 42(6), 7125–7134 (2016). https://doi.org/10.1016/j.ceramint.2016.01.101

    Article  CAS  Google Scholar 

  14. M. Lorenz et al., Homoepitaxial MgxZn1−xO (0≤x≤0.22) thin films grown by pulsed laser deposition. Thin Solid Films 518(16), 4623–4629 (2010). https://doi.org/10.1016/j.tsf.2009.12.046

    Article  CAS  Google Scholar 

  15. C.Y. Liu, H.Y. Xu, L. Wang, X.H. Li, Y.C. Liu, Pulsed laser deposition of high Mg-content MgZnO films: Effects of substrate temperature and oxygen pressure. J. Appl. Phys. 106(7), 073518 (2009). https://doi.org/10.1063/1.3240328

    Article  CAS  Google Scholar 

  16. S. Han et al., Growth of (111) and (200) orientation cubic MgZnO thin films under different oxygen flow rate by PLD method and its difference in element composition and optical absorption characteristics. Mater. Res. Bull. 64, 76–81 (2015). https://doi.org/10.1016/j.materresbull.2014.12.054

    Article  CAS  Google Scholar 

  17. X. Wang, K. Saito, T. Tanaka, M. Nishio, Q. Guo, Lower temperature growth of single phase MgZnO films in all Mg content range. J. Alloy. Compd. 627, 383–387 (2015). https://doi.org/10.1016/j.jallcom.2014.12.128

    Article  CAS  Google Scholar 

  18. M.N.H. Mia et al., Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method. Res. Phys. 7, 2683–2691 (2017). https://doi.org/10.1016/j.rinp.2017.07.047

    Article  Google Scholar 

  19. X.-L. Tang, S.-L. Young, C.-Y. Kung, M.-C. Kao, H.-Z. Chen, C.-J. Ou, Nanostructural dependence of photoluminescence and photosensing properties in hydrothermally synthesized Mg-doped ZnO nanorod arrays. Thin Solid Films 649, 75–80 (2018). https://doi.org/10.1016/j.tsf.2018.01.023

    Article  CAS  Google Scholar 

  20. M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Res. Phys. 7, 620–627 (2017). https://doi.org/10.1016/j.rinp.2017.01.023

    Article  Google Scholar 

  21. K. Pradeev raj et al., Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13(1), 229 (2018). https://doi.org/10.1186/s11671-018-2643-x

    Article  CAS  Google Scholar 

  22. A.L. Patterson, The scherrer formula for X-Ray particle size determination. Phys. Rev. 56(10), 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  23. BD. Cullity, Elements of X-ray diffraction. MA: Addition-Wesley; 1978. p. 102. MA Addition Wesley, 1978.

  24. F. Hassan, M. Miran, H. Simol, M.H. Susan, M. Mollah, Synthesis of ZnO nanoparticles by a hybrid electrochemical-thermal method: influence of calcination temperature. Bangladesh J. Sci. Ind. Res. 50(1), 21–28 (2015). https://doi.org/10.3329/bjsir.v50i1.23806

    Article  CAS  Google Scholar 

  25. T.L. Valerio, G.A.R. Maia, L.F. Gonçalves, A. Viomar, E.P. Banczek do, P.R.P. Rodrigues, Study of the Nb2O5 insertion in ZnO to dye-sensitized solar cells. Mat. Res. 22(1), e20180864 (2019). https://doi.org/10.1590/1980-5373-mr-2018-0864

    Article  CAS  Google Scholar 

  26. Q. Shi et al., Red luminescent and structural properties of Mg-doped ZnO phosphors prepared by sol–gel method. Mater. Sci. Eng., B 177(9), 689–693 (2012). https://doi.org/10.1016/j.mseb.2012.03.045

    Article  CAS  Google Scholar 

  27. Md.S. Hossain et al., Understanding the shrinkage of optical absorption edges of nanostructured Cd–Zn sulphide films for photothermal applications. Appl. Surf. Sci. 392, 854–862 (2017). https://doi.org/10.1016/j.apsusc.2016.09.095

    Article  CAS  Google Scholar 

  28. L. Xu, X. Li, Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method. J. Cryst. Growth 312(6), 851–855 (2010). https://doi.org/10.1016/j.jcrysgro.2009.12.062

    Article  CAS  Google Scholar 

  29. L. Xu, G. Zheng, M. Lai, S. Pei, Annealing impact on the structural and photoluminescence properties of ZnO thin films on Ag substrates. J. Alloy. Compd. 583, 560–565 (2014). https://doi.org/10.1016/j.jallcom.2013.09.009

    Article  CAS  Google Scholar 

  30. Y. Hu, H. Zeng, J. Du, Z. Hu, S. Zhang, The structural, electrical and optical properties of Mg-doped ZnO with different interstitial Mg concentration. Mater. Chem. Phys. 182, 15–21 (2016). https://doi.org/10.1016/j.matchemphys.2016.05.065

    Article  CAS  Google Scholar 

  31. J. Singh et al., Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires. CrystEngComm 14(18), 5898 (2012). https://doi.org/10.1039/c2ce06650e

    Article  CAS  Google Scholar 

  32. A. Ashrafi, Y. Segawa, Blueshift in MgxZn1−xO alloys: nature of bandgap bowing. J. Appl. Phys. 104(12), 123528 (2008). https://doi.org/10.1063/1.3050338

    Article  CAS  Google Scholar 

  33. V. Srikant, D.R. Clarke, Optical absorption edge of ZnO thin films: the effect of substrate. J. Appl. Phys. 81(9), 6357–6364 (1997). https://doi.org/10.1063/1.364393

    Article  CAS  Google Scholar 

  34. Z.B. Wang, M.G. Helander, Z.W. Liu, M.T. Greiner, J. Qiu, Z.H. Lu, Controlling carrier accumulation and exciton formation in organic light emitting diodes. Appl. Phys. Lett. 96(4), 043303 (2010). https://doi.org/10.1063/1.3297884

    Article  CAS  Google Scholar 

  35. S.S. Rawat, A. Rana, S.K. Swami, R. Srivastava, C.K. Suman, Investigation of negative magneto-conductance properties of cobalt phthalocyanine thin films. SN Appl. Sci. 2(4), 586 (2020). https://doi.org/10.1007/s42452-020-2405-0

    Article  CAS  Google Scholar 

  36. Y. Zhang, L. Li, S. Yuan, G. Li, W. Zhang, Electrical properties of the interfaces in bulk heterojunction organic solar cells investigated by electrochemical impedance spectroscopy. Electrochim. Acta 109, 221–225 (2013). https://doi.org/10.1016/j.electacta.2013.07.152

    Article  CAS  Google Scholar 

  37. B. Arredondo, B. Romero, G. Del Pozo, M. Sessler, C. Veit, U. Würfel, Impedance spectroscopy analysis of small molecule solution processed organic solar cell. Sol. Energy Mater. Sol. Cells 128, 351–356 (2014). https://doi.org/10.1016/j.solmat.2014.05.050

    Article  CAS  Google Scholar 

  38. K.A. Miller et al., Electrode independent chemoresistive response for cobalt phthalocyanine in the space charge limited conductivity regime. J. Phys. Chem. B 110(1), 361–366 (2006). https://doi.org/10.1021/jp053104a

    Article  CAS  Google Scholar 

  39. P. Basumatary, P. Agarwal, Photocurrent transient measurements in MAPbI3 thin films. J. Mater. Sci.: Mater. Electron. 31(13), 10047–10054 (2020). https://doi.org/10.1007/s10854-020-03549-7

    Article  CAS  Google Scholar 

  40. J. Chaudhary, S.K. Gupta, A.S. Verma, C.M.S. Negi, Impact of electron transport layer material on the performance of CH3NH3PbBr 3 perovskite-based photodetectors. J. Mater. Sci. 55(10), 4345–4357 (2020). https://doi.org/10.1007/s10853-019-04308-8

    Article  CAS  Google Scholar 

  41. L. Min, W. Tian, F. Cao, J. Guo, L. Li, 2D ruddlesden-popper perovskite with ordered phase distribution for high-performance self-powered photodetectors. Adv. Mater. 33(35), 2101714 (2021). https://doi.org/10.1002/adma.202101714

    Article  CAS  Google Scholar 

  42. S. Raveesh, V.K.S. Yadav, R. Paily, CuO single-nanowire-based white-light photodetector. IEEE Electr. Dev. Lett. 42(7), 1021–1024 (2021). https://doi.org/10.1109/LED.2021.3081627

    Article  CAS  Google Scholar 

  43. C. Li et al., Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci. Appl. 9(1), 31 (2020). https://doi.org/10.1038/s41377-020-0264-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the funding agency Council of Scientific & Industrial Research (CSIR) for fellowship support and the Director of CSIR-National Physical Laboratory, New Delhi for providing the research facilities.

Funding

There is no funding received from any agencies. The Authors are grateful to the Director CSIR-National Physical Laboratory for in-house project support.

Author information

Authors and Affiliations

Authors

Contributions

AR: performed the materials synthesis, device fabrication, and data collection. AS: performed the photodetector’s characterization. SPK: analysed the photodetector’s data. RS and CKS: were involved in the planning of experiments, experimental support, data analysis, and paper writing.

Corresponding authors

Correspondence to R. Srivastava or C. K. Suman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, A., Sharma, A., Khanna, S.P. et al. Effect of solution-processed Mg-doped ZnO electron transport layer on the photodetector properties of MAPbI3 thin film. J Mater Sci: Mater Electron 34, 1379 (2023). https://doi.org/10.1007/s10854-023-10751-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10751-w

Navigation