Skip to main content
Log in

Sodium–tungsten–titanium phosphate glasses: an investigation of the structure, chemical endurance, and kinetic characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Many technologies have applied sodium ions’ solid electrolytes, ranging from batteries to chemical sensors. This study investigated phosphate glasses featuring electrolyte developed through the 20Na2O–(50 − x)Na2WO4xTiO2–30P2O5 system (with 0 ≤ x ≤ 25 mol%), with the melt-quenching approach employed. For the estimation of the activation energy, differential scanning calorimetry was utilized, whereby crystallization (Ec) was relied upon. Ec = 144.77 kJ/mol characterized the glass (x = 5). The determination of the crystallization mechanism was possible through the Avrami parameter (n), which was found to be approximately ≈ 2; therefore, the crystallization mechanism was expected to be a periodic landscape that is one-dimensional in nature. The bonds forming the glasses’ framework were shown to be established through the PO4 units, as revealed by Raman spectroscopy. TiO2 insertion into the framework of glass resulted in new bond formation, namely P–O–Ti and/or Ti–O–Ti. Shifting the Na2WO4 mol% to TiO2 mol% resulted in the structural units’ transformation into Q2, Q1, and finally Q0 units. Through the durability analysis, the results confirmed that the explored glasses’ dissolution is reliant upon their composition, which is of a glassy nature. There is an increase in durability when Na2WO4 is replaced by TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. J.W. Fergus, Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227, 102–112 (2012)

    CAS  Google Scholar 

  2. Y. Wang, S. Song, C. Xu, N. Hu, J. Molenda, L. Lu, Development of solid-state electrolytes for sodium-ion battery—a short review. Nano Mater. Sci. 1(2), 91–100 (2019)

    Google Scholar 

  3. Z. Yan, Y. Liang, J. Xiao, W. Lai, W. Wang, Q. Xia et al., A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na–S batteries. Adv. Mater. 32(8), 1906700 (2020)

    CAS  Google Scholar 

  4. H.A. Thabit, N.A. Kabir, N.M. Ahmed, Synthesis and thermoluminescence characteristics and structural and optical studies of ZnO/Ag/ZnO system for dosimetric applications. J. Lumin. 236, 118097 (2021)

    CAS  Google Scholar 

  5. P.J. Melling, A.R. Allnatt, Modelling of leaching and corrosion of glass. J. Non-Cryst. Solids 42(1–3), 553–559 (1980)

    CAS  Google Scholar 

  6. E. Fernández, F.J. Gil, M.P. Ginebra, F.C.M. Driessens, J.A. Planell, S.M. Best, Calcium phosphate bone cements for clinical applications. Part I: solution chemistry. J. Mater. Sci. Mater. Med. 10, 169–176 (1999)

    Google Scholar 

  7. H. Ebendorff-Heidepriem, W. Seeber, D. Ehrt, Dehydration of phosphate glasses. J. Non-Cryst. Solids 163(1), 74–80 (1993)

    CAS  Google Scholar 

  8. M.R. Reidmeyer, D.E. Day, Phosphorus oxynitride glasses. J. Non-Cryst. Solids 181(3), 201–214 (1995)

    CAS  Google Scholar 

  9. L. Pascual, A. Durán, Nitridation of glasses in the system R2O-MO-P2O5. Mater. Res. Bull. 31(1), 77–95 (1996)

    CAS  Google Scholar 

  10. A. Le Sauze, R. Marchand, Chemically durable nitrided phosphate glasses resulting from nitrogen/oxygen substitution within PO4 tetrahedra. J. Non-Cryst. Solids 263, 285–292 (2000)

    Google Scholar 

  11. H.A. Abo-Mosallam, Influences of SrO on the structure, thermo-physical and chemical properties of zinc iron borophosphate glasses as host matrices for radioactive waste. J. Non-Cryst. Solids 571, 121084 (2021)

    CAS  Google Scholar 

  12. S.V. Pershina, B.D. Antonov, I.I. Leonidov, Effect of MoO3 on structural, thermal and transport properties of lithium phosphate glasses. J. Non-Cryst. Solids 569, 120944 (2021)

    CAS  Google Scholar 

  13. A. Ibrahim, M.S. Sadeq, Influence of cobalt oxide on the structure, optical transitions and ligand field parameters of lithium phosphate glasses. Ceram. Int. 47(20), 28536–28542 (2021)

    CAS  Google Scholar 

  14. H. Es-Soufi, L. Bih, Effect of TiO2 on the chemical durability and optical properties of Mo-based phosphate glasses. J. Non-Cryst. Solids 558, 120655 (2021)

    CAS  Google Scholar 

  15. H.A. Thabit, N.A. Kabir, N.M. Ahmed, Synthesis & thermoluminescence characteristics & structural and optical studies of ZnO/Ag/ZnO system for dosimetric applications. J. Lumin. 236, 118097 (2021)

    CAS  Google Scholar 

  16. H. Segawa, N. Akagi, T. Yano, S. Shibata, Properties and structures of TiO2–ZnO–P2O5 glasses. J. Ceram. Soc. Jpn. 118(1376), 278–282 (2010)

    CAS  Google Scholar 

  17. H. Es-soufi, L. Ouachouo, M.I. Sayyed, S. Hashim, H. Bih, L. Bih, Synthesis and investigation of the physical, structural, and radiation shielding properties of the titano-bismuth phosphate glasses. J. Mater. Sci. Mater. Electron. 34(12), 1040 (2023)

    CAS  Google Scholar 

  18. I. Mimouni, A. Bouziani, Y. Naciri, M. Boujnah, M.A. El Belghiti, M. El Azzouzi, Effect of heat treatment on the photocatalytic activity of α-Fe2O3 nanoparticles: towards diclofenac elimination. Environ. Sci. Pollut. Res. 29, 7984–7996 (2021)

    Google Scholar 

  19. D.S. Brauer, Bioactive glasses—structure and properties. Angew. Chem. Int. Ed. 54(14), 4160–4181 (2015)

    CAS  Google Scholar 

  20. A. Kiani, N.J. Lakhkar, V. Salih, M.E. Smith, J.V. Hanna, R.J. Newport et al., Titanium-containing bioactive phosphate glasses. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1963), 1352–1375 (2012)

    CAS  Google Scholar 

  21. E.A. Abou Neel, W. Chrzanowski, J.C. Knowles, Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater. 4(3), 523–534 (2008)

    Google Scholar 

  22. T. Kasuga, Y. Abe, Calcium phosphate invert glasses with soda and titania. J. Non-Cryst. Solids 243(1), 70–74 (1999)

    CAS  Google Scholar 

  23. M. Kaur, A. Singh, V. Thakur, L. Singh, Effect of TiO2 substitution on optical and structural aspects of phosphate glasses. J. Mol. Struct. 1089, 95–101 (2015)

    CAS  Google Scholar 

  24. M. Ataalla, A.S. Afify, M. Hassan, M. Abdallah, M. Milanova, H.Y. Aboul-Enein, A. Mohamed, Tungsten-based glasses for photochromic, electrochromic, gas sensors, and related applications: a review. J. Non-Cryst. Solids 491, 43–54 (2018)

    CAS  Google Scholar 

  25. H. Es-Soufi, L. Bih, A.R. Lima, A. El Bouari, B. Manoun, S. Hussain, Investigation DSC and XRD on the crystallization kinetics in the phosphate Li2O–Li2WO4–TiO2–P2O5 glassy ionic system. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.21203/rs.3.rs-190511/v1

  26. M. Nalin, G. Poirier, S.J.L. Ribeiro, Y. Messaddeq, L. Cescato, Glasses in the SbPO4–WO3 system. J. Non-Cryst. Solids 353(16–17), 1592–1597 (2007)

    CAS  Google Scholar 

  27. D. Boudlich, L. Bih, M.E.H. Archidi, M. Haddad, A. Yacoubi, A. Nadiri, B. Elouadi, Infrared, Raman, and electron spin resonance studies of vitreous alkaline tungsten phosphates and related glasses. J. Am. Ceram. Soc. 85(3), 623–630 (2002)

    CAS  Google Scholar 

  28. K.C. Sekhar, A. Hameed, N. Narsimlu, J.S. Alzahrani, M.A. Alothman, I.O. Olarinoye et al., Synthesis, optical, structural, and radiation transmission properties of PbO/Bi2O3/B2O3/Fe2O3 glasses: an experimental and in silico study. Opt. Mater. 117, 111173 (2021)

    CAS  Google Scholar 

  29. H. Es-soufi, L. Bih, Synthesis, characterization, and optical properties of titano-molybdenum phosphate glasses. J. Electron. Mater. 51(5), 2528–2544 (2022)

    CAS  Google Scholar 

  30. A. Rezikyan, G.G. Moore, Fluctuation electron microscopy study of crystal nucleation in TiO2–SiO2 glass with heat treatment. J. Phys. Condens. Matter 32(48), 485402 (2020)

    CAS  Google Scholar 

  31. H.A. Thabit, A.K. Ismail, M.I. Sayyed, H. Es-soufi, Preparation, characterization, and mechanical-optical properties of telluro-borate glasses containing tungsten. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.05.185

    Article  Google Scholar 

  32. R. Pagoti, S. Panda, V. Patchapureddy, R.K. Padhi, B. Subramanian, H. Jena, B.S. Panigrahi, Structural and spectroscopic investigations of neodymium-doped strontium borophosphate glass. Luminescence 36(7), 1706–1715 (2021)

    CAS  Google Scholar 

  33. M. Nagarjuna, T. Satyanarayana, Y. Gandhi, N. Veeraiah, Influence of Ag2O on some physical properties of LiF–TiO2–P2O5 glass system. J. Alloys Compd. 479(1–2), 549–556 (2009)

    CAS  Google Scholar 

  34. R.K. Brow, D.R. Tallant, S.T. Myers, C.C. Phifer, The short-range structure of zinc polyphosphate glass. J. Non-Cryst. Solids 191(1–2), 45–55 (1995)

    CAS  Google Scholar 

  35. Z. Černošek, M. Chládková, J. Holubová, The influence of TiO2 on the structure and properties of sodium-zinc phosphate glasses. J. Non-Cryst. Solids 531, 119866 (2020)

    Google Scholar 

  36. F. Delahaye-Carrière, Doctoral dissertation Compiègne (1997)

  37. L. Ma, R.K. Brow, M.E. Schlesinger, Dissolution behavior of Na2O–FeO–Fe2O3–P2O5 glasses. J. Non-Cryst. Solids 463, 90–101 (2017)

    CAS  Google Scholar 

  38. M.N. Rahaman, Ceramic Processing and Sintering, 2nd edn. (Marcel Dekker, New York, 2003)

    Google Scholar 

  39. Y. Gu, W. Xiao, L. Lu, W. Huang, M.N. Rahaman, D. Wang, Kinetics and mechanisms of converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution. J. Mater. Sci. 46, 47–54 (2011)

    CAS  Google Scholar 

  40. H. Es-soufi, H. Bih, M. Azrour, B. Manoun, P. Lazor, Structure and some physical properties of the sodium ion conducting glasses inside the Na2O–Na2WO4–TiO2–P2O5 system. J. Appl. Surf. Interfaces (2018). https://doi.org/10.48442/IMIST.PRSM/jasi-v4i1-3.11273

  41. R.N. Oosterbeek, K.I. Margaronis, X.C. Zhang, S.M. Best, R.E. Cameron, Non-linear dissolution mechanisms of sodium calcium phosphate glasses as a function of pH in various aqueous media. J. Eur. Ceram. Soc. 41(1), 901–911 (2021)

    CAS  Google Scholar 

  42. C. Solenn, thèse de doctorat Université Rennes 1 (2016)

  43. N. Mascaraque, A. Durán, F. Muñoz, Effect of fluorine and nitrogen on the chemical durability of lithium phosphate glasses. J. Non-Cryst. Solids 417, 60–65 (2015)

    Google Scholar 

  44. H.E. Kissinger, Differential thermal analysis. J. Res. Natl. Bur. Stand. 57(4), 217 (1956)

    CAS  Google Scholar 

  45. J.A. Augis, J.E. Bennett, Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal. 13, 283–292 (1978)

    CAS  Google Scholar 

  46. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2001)

    Google Scholar 

  47. M. Avrami, Kinetics of phase change 1. J. Chem. Phys. 7, 1103 (1939)

    CAS  Google Scholar 

  48. M. Avrami, J. Chem. Phys. 8, 212 (1940)

    CAS  Google Scholar 

  49. M. Avrami, J. Chem. Phys. 9, 177 (1941)

    CAS  Google Scholar 

  50. N. Elkhoshkhany, E. Syala, Kinetic characterization of TeO2–Bi2O3–V2O5–Na2O–TiO2 glass system. Ceram. Int. 43(8), 6156–6162 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

M.I. Sayyed and S. Hashim gratefully acknowledge Universiti Teknologi Malaysia for providing Prominent Visiting Researcher Scheme (RJ3000.7113.3F000) initiatives under the Department Deputy of Vice-Chancellor (Research and Innovation).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HE, MIS, and LB. The first draft of the manuscript was written by HE and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hicham Es-soufi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Research involving human participants and/or animals

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Es-soufi, H., Sayyed, M.I. & Bih, L. Sodium–tungsten–titanium phosphate glasses: an investigation of the structure, chemical endurance, and kinetic characteristics. J Mater Sci: Mater Electron 34, 1355 (2023). https://doi.org/10.1007/s10854-023-10741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10741-y

Navigation