Skip to main content
Log in

Remarkably enhanced dielectric properties in PVDF composites via engineering core@shell structured ZnO@PS nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 16 June 2023

This article has been updated

Abstract

In order to concurrently suppress the dielectric loss and enhance the breakdown strength (Eb) of raw zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) composites, in this study, the polystyrene (PS) encapsulated ZnO particles were fabricated via a suspension polymerization method, and further composited with PVDF to deliberately generate morphology-controllable high dielectric permittivity (ε′) and Eb but low-loss nanocomposites. The effects of the PS shell and its thickness on the dielectric properties of the ZnO/PVDF were investigated as a function of the filler concentration and frequency. Besides, the Havriliak-Negami (H-N) expression was used to fit the dielectric properties so as to theoretically comprehend the PS interlayer’s effect on the polarization and carrier migration mechanism in the nanocomposites. Research results verify that the ZnO@PS/PVDF nanocomposites present very low loss and conductivity when compared to the raw ZnO/PVDF thanks to the insulating PS shell’s ability to effectively prevent the ZnO particles from contacting with one another, thereby prohibiting the appearance of leakage current. And the filler’s homogeneous dispersion in PVDF is also enhanced owing to improved interfacial compatibility and interactions subsequently elevating the Eb of nanocomposites. Moreover, by adjusting the PS shell’ thickness, the dielectric properties of the nanocomposites can be efficiently tuned. Therefore, the developed ZnO@PS/PVDF nanocomposites with high-ε′ and Eb but low loss, present promising application prospects in microelectronic and electrical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

References

  1. P. Wang, X.M. Zhang, W. Duan, W. Teng, Y.B. Liu, Q. Xie, Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 39, 1153–1158 (2021)

    CAS  Google Scholar 

  2. W.Y. Zhou, X. Li, F. Zhang, C.H. Zhang, Z. Li, F.X. Chen, H.W. Cai, X.R. Liu, Q.G. Chen, Z.M. Dang, Concurrently enhanced dielectric properties and thermal conductivity in PVDF composites with core-shell structured β-SiCw@SiO2 whiskers. Compos. Part. A 137, 106021 (2020)

    CAS  Google Scholar 

  3. J. Chen, F.X. Huang, C.Y. Zhang, F.C. Meng, L.L. Cao, H.X. Lin, Enhanced energy storage density in poly (vinylidene fluoride-hexafluoropropylene) nanocomposites by filling with core-shell structured BaTiO3@MgO nanoparticles. J. Energy Storage 53, 105163 (2022)

    Google Scholar 

  4. Y.J. Kou, W.Y. Zhou, X. Li, Z.J. Wang, Y. Li, H.W. Cai, D.F. Liu, F.X. Chen, G.H. Wang, Z.M. Dang, Enhanced dielectric properties of PVDF nanocomposites with modified sandwich-like GO@PVP hybrids. Polym. Plast. Tech. Mat. 59, 592–605 (2020)

    CAS  Google Scholar 

  5. F. Ren, Z.D. Huang, R. Ma, Q. Xie, Electronic structures, magnetic properties and dielectric properties of Fe3Si@SiO2 core-shell structure from first-principles study. Mater. Chem. Phys. 254, 123282 (2020)

    CAS  Google Scholar 

  6. Y.C. Jiang, Z. Zhang, Z. Zhou, H. Yang, Q.L. Zhang, Enhanced dielectric performance of (PVDF-HFP) composites with satellite-core-structured Fe2O3@BaTiO3 nanofillers. Polymers 11, 1541 (2019)

    CAS  Google Scholar 

  7. B. Xie, T.T. Wang, J.X. Cai, Q.Y. Zheng, Z.Y. Liu, K. Guo, P. Mao, H.B. Zhang, S.L. Jiang, High energy density of ferroelectric polymer nanocomposites utilizing PZT@SiO2 nanocubes with morphotropic phase boundary. Chem. Eng. J. 434, 134659 (2022)

    CAS  Google Scholar 

  8. A. Srivastava, K.K. Jana, P. Maiti, D. Kumar, O. Parkash, Poly (vinylidene fluoride)/CaCu3Ti4O12 and La doped CaCu3Ti4O12 composites with improved dielectric and mechanical properties. Mater. Res. Bull. 70, 735–742 (2015)

    CAS  Google Scholar 

  9. Z.B. Pan, L.M. Yao, J.W. Zhai, B. Shen, S.H. Liu, H.T. Wang, J.H. Liu, Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. J. Mater. Chem. A 4, 13259–13264 (2016)

    CAS  Google Scholar 

  10. P. Wang, Z.Q. Li, Q. Xie, W. Duan, X.C. Zhang, H.L. Han, A passive anti-icing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength. J. Bionic. Eng. 18, 55–64 (2021)

    Google Scholar 

  11. Y.J. Niu, F. Xiang, Y.F. Wang, J. Chen, H. Wang, Effect of the coverage level of carboxylic acids as a modifier for barium titanate nanoparticles on the performance of poly(vinylidene fluoride)-based nanocomposites for energy storage applications. Phys. Chem. Chem. Phys. 20, 6598–6605 (2018)

    CAS  Google Scholar 

  12. W.Y. Zhou, Y.J. Kou, M.X. Yuan, B. Li, H.W. Cai, Z. Li, F.X. Chen, X.R. Liu, G.H. Wang, Q.G. Chen, Z.M. Dang, Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Compos. Sci. Technol. 181, 107686 (2019)

    CAS  Google Scholar 

  13. W.W. Peng, W.Y. Zhou, T. Li, J.J. Zhou, T. Yao, H.J. Wu, X.T. Zhao, J. Luo, J.X. Liu, D.L. Zhang, Towards inhibiting conductivity of Mo/PVDF composites through building MoO3 shell as an interlayer for enhanced dielectric properties. J. Mater. Sci. Mater. Electron. 33, 14735–14753 (2022)

    CAS  Google Scholar 

  14. D. Cao, W.Y. Zhou, M. Zhang, G.Z. Cao, Y.T. Yang, G.H. Wang, D.F. Liu, F.X. Chen,Insights into synchronously enhanced dielectric properties and thermal conductivity of β-SiCw/PVDF nanocomposites by building a crystalline SiO2 shell as an interlayer. Ind. Eng. Chem. Res. 61, 8043–8056 (2022)

    CAS  Google Scholar 

  15. T. Yao, W.Y. Zhou, W.W. Peng, J.J. Zhou, T. Li, H.J. Wu, J. Zheng, N. Lin, D.F. Liu, C.Y. Hou, Insights into concomitant enhancements of dielectric properties and thermal conductivity of PVDF composites filled with core@double-shell structured Zn@ZnO@PS particles. J. Appl. Polym. Sci. 139, e53069 (2022)

    CAS  Google Scholar 

  16. M.X. Yuan, G. Zhang, B. Li, T.C.M. Chung, R. Rajagopalan, M.T. Lanagan, Thermally stable low-loss polymer dielectrics enabled by attaching cross-linkable antioxidant to polypropylene. Acs Appl. Mater. Inter. 12, 14154–14164 (2022)

    Google Scholar 

  17. W.Y. Zhou, F. Zhang, M.X. Yuan, B. Li, J.D. Peng, Y.Q. Lv, H.W. Cai, X.R. Liu, Q.G. Chen, Z.M. Dang, Improved dielectric properties and thermal conductivity of PVDF composites filled with core-shell structured Cu@CuO particles. J. Mater. Sci. Mater. Electron. 30, 18350–18361 (2019)

    CAS  Google Scholar 

  18. H. Celebi, S. Duran, A. Dogan, The effect of core-shell BaTiO3@SiO2 on the mechanical and dielectric properties of PVDF composites. Polym. Plast. Tech. Mat. 61, 1–13 (2022)

    Google Scholar 

  19. T. Li, W.Y. Zhou, Y. Li, D. Cao, Y. Wang, G.Z. Cao, X.R. Liu, H.W. Cai, Z.M. Dang, Synergy improvement of dielectric properties and thermal conductivity in PVDF composites with core-shell structured Ni@SiO2. J. Mater. Sci. Mater. Electron. 32, 4076–4089 (2021)

    CAS  Google Scholar 

  20. F.E. Bouharras, M. Raihane, B. Ameduri, Recent progress on core-shell structured BaTiO3@polymer/fluorinated polymers nanocomposites for high energy storage: synthesis, dielectric properties and applications. Prog Mater. Sci. 113, 100670 (2020)

    CAS  Google Scholar 

  21. J.J. Zhou, W.Y. Zhou, D. Cao, C.H. Zhang, W.W. Peng, T. Yao, J. Zuo, J.T. Cai, Y. Li, PVDF reinforced with core-shell structured Mo@MoO3 fillers: effects of semi-conductor MoO3 interlayer on dielectric properties of composites. J. Polym. Res. 29, 1–14 (2022)

    CAS  Google Scholar 

  22. G.Z. Cao, W.Y. Zhou, Y.Y. Li, P.Q. Liu, T. Yao, J. Li, J. Zuo, J.T. Cai, Y. Li, Suppressed dielectric loss and enhanced breakdown strength in Ni/PVDF composites through constructing Al2O3 shell as an interlayer[J]. J. Mater. Sci. Mater. Electron. 33, 9951–9965 (2022)

    CAS  Google Scholar 

  23. X. Zhang, M.Q. Le, O. Zahhaf, J.F. Capsal, P.J. Cottinet, L. Petit, Enhancing dielectric and piezoelectric properties of micro-ZnO/PDMS composite-based dielectrophoresis. Mater. Des. 192, 108783 (2020)

    CAS  Google Scholar 

  24. P.H. Ju, L. Weng, L.Z. Liu, X.R. Zhang, Preparation and characterisation of Al-doped ZnO and PVDF composites. High. Volt. 1, 166–170 (2016)

    Google Scholar 

  25. F. Zhang, W.Y. Zhou, C.H. Zhang, Y. Li, C. Liang, X. Li, G.H. Wang, H.W. Cai, Z.M. Dang, Toward enhancing dielectric properties and thermal conductivity of f-Cu/PVDF with PS as an interlayer. Polym. Plast. Tech. Mat. 60, 680–693 (2020)

    Google Scholar 

  26. J.W. Zha, M.S. Zheng, B.H. Fan, Z.M. Dang, Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano. Energy 89, 106438 (2021)

    CAS  Google Scholar 

  27. Z.D. Wang, G.D. Meng, L.L. Wang, L.L. Tian, S.Y. Chen, G.L. Wu, B. Kong, Y.H. Cheng, Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep. 11, 1–11 (2021)

    Google Scholar 

  28. B. Li, C.A. Randall, E. Manias, Polarization mechanism underlying strongly enhanced dielectric permittivity in polymer composites with conductive fillers. J. Phys. Chem. C 126, 7596–7604 (2022)

    CAS  Google Scholar 

  29. B. Li, M. Sarkarat, A. Baker, E. Manias, C.A. Randall, Interfacial effects on the dielectric properties of elastomer/carbon-black/ceramic composites. MRS Adv. 6, 247–251 (2021)

    Google Scholar 

  30. Z.D. Wang, X.Z. Wang, S.L. Wang, J.Y. He, T. Zhang, J. Wang, G.L. Wu, Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/epoxy composites. Nanomaterials 11, 1898 (2021)

    CAS  Google Scholar 

  31. M.S. Zheng, C. Zhang, Y. Yang, Z.L. Xing, X. Chen, S.L. Zhong, Z.M. Dang, Improved dielectric properties of PVDF nanocomposites with core-shell structured BaTiO3@polyurethane nanoparticles. IET Nanodielectr. 3, 94–98 (2020)

    Google Scholar 

  32. B.H. Fan, M.Y. Zhou, C. Zhang, Y. Liu, D.L. He, J.B. Bai, Designing BaTiO3/carbon nanotube core-shell hybrids to achieve polyvinylidene fluoride composites with high dielectric properties. Mater. Res. Express 6, 075071 (2019)

    CAS  Google Scholar 

  33. W.J. Chen, H. Hao, Y. Yang, C. Chen, M. Appiah, Z.H. Yao, M.H. Cao, Z.Y. Yu, H.X. Liu, Dielectric properties and impedance analysis of BaTiO3-based ceramics with core-shell structure. Ceram. Int. 43, 8449–8458 (2017)

    CAS  Google Scholar 

  34. K. Silakaew, P. Thongbai, Continually enhanced dielectric constant of poly(vinylidene fluoride) with BaTiO3@Poly(vinylidene fluoride) core-shell nanostructure filling. Ceram. Int. 48, 7005–7012 (2022)

    CAS  Google Scholar 

  35. M.P. Srinivasan, C. Uthiram, A. Ayeshamariam, K. Kaviyarasu, N. Punithavelan, Dielectric performance of CeO2/ZnO core-shell nanocomposite with their structural, optical and morphological properties. J. King Saud Univ. Sci. 35, 102508 (2022)

    Google Scholar 

  36. J.L. Li, J.H. Yin, C. Yang, N. Li, Y. Feng, Y.Y. Liu, H. Zhao, Y.P. Li, C.C. Zhu, D. Yue, B. Su, X.X. Liu, Enhanced dielectric performance and energy storage of PVDF-HFP‐based composites induced by surface charged Al2O3. J. Polym. Sci. Pol. Phys. 57, 574–583 (2019)

    CAS  Google Scholar 

  37. W.Y. Zheng, L.L. Ren, X.T. Zhao, H. Li, Z.L. Xie, Y.P. Li, C. Wang, L. Yu, L.J. Yang, R.J. Liao, Tuning interfacial relaxations in P(VDF-HFP) with Al2O3@ZrO2 core-shell nanofillers for enhanced dielectric and energy storage performance. Compos. Sci. Technol. 222, 109379 (2022)

    CAS  Google Scholar 

  38. L.H. Zhao, Z.J. Chen, J.W. Ren, L.Y. Yang, Y.C. Li, Z. Wang, W.J. Ning, S.L. Jia, Synchronously improved thermal conductivity and dielectric constant for epoxy composites by introducing functionalized silicon carbide nanoparticles and boron nitride microspheres. J. Colloid Interface Sci. 627, 205–214 (2022)

    CAS  Google Scholar 

  39. X. Lu, W. Deng, J.D. Wei, Y.H. Wan, J.J. Zhang, L. Zhang, L. Jin, Z.Y. Cheng, Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Compos. B Eng. 224, 109195 (2021)

    CAS  Google Scholar 

  40. L.L. Wang, C.X. Yang, X.Y. Wang, J.Y. Shen, W.J. Sun, J.K. Wang, G.Q. Yang, Y.H. Cheng, Z.D. Wang, Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Compos. Part. A Appl. Sci. Manuf. 164, 107320 (2022)

    Google Scholar 

  41. W.Y. Zhou, T. Li, M.X. Yuan, B. Li, S.L. Zhong, Z. Li, X.R. Liu, J.J. Zhou, Y. Wang, H.W. Cai, Z.M. Dang, Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater. 42, 1–11 (2021)

    CAS  Google Scholar 

  42. X. Lu, W. Deng, J.D. Wei, Y.S. Zhu, P.R. Ren, Y.H. Wan, F.X. Yan, L. Jin, L. Zhang, Z.Y. Cheng, Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. J. Mater. Sci. 56, 19983–19995 (2021)

    CAS  Google Scholar 

  43. M.X. Yuan, B. Li, S.H. Zhang, R. Rajagopalan, M.T. Lanagan, High-field dielectric properties of oriented poly (vinylidene fluoride-co-hexafluoropropylene): structure-dielectric property relationship and implications for energy storage applications. ACS Appl. Polym. Mater. 2, 1356–1368 (2020)

    CAS  Google Scholar 

  44. Y.S. Zhang, M. Wang, C. Yang, Y.W. Shao, X.D. Qi, J.H. Yang, Y. Wang, Heterogeneous BaTiO3@Ag core-shell fibers as fillers for polymer dielectric composites with simultaneously improved dielectric constant and breakdown strength. Compos. Commun. 27, 100874 (2021)

    Google Scholar 

  45. S.L. Zhong, Z.M. Dang, W.Y. Zhou, H.W. Cai, Past and future on nanodielectrics. IET Nanodielectr. 1, 41–47 (2018)

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 51903207, 52277028), Shaanxi Provincial Natural Science Foundation of China (No. 2022JM-186), and acknowledge the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by WZ, YL, and JC. Characterization and related discussion were performed by JZ, JL, HN, DL and AF. Funding acquisition and Project administration were performed by WZ, YL. The first draft of the manuscript was written by YY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenying Zhou or Ying Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article. Authors are responsible for correctness of the statements provided in the manuscript. See also Authorship Principles. The Editor-in-Chief reserves the right to reject submissions that do not meet the guidelines described in this section.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhou, W., Zhou, J. et al. Remarkably enhanced dielectric properties in PVDF composites via engineering core@shell structured ZnO@PS nanoparticles. J Mater Sci: Mater Electron 34, 1314 (2023). https://doi.org/10.1007/s10854-023-10728-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10728-9

Navigation