Skip to main content
Log in

Salt-flux synthesis of bismuth layer-structured Ca-doped Sr2Bi2Nb2TiO12: the effect of cation substitution on structure, ferroelectric and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study used the salt-flux method to synthesize three-layer Aurivillius Sr2−xCaxBi2Nb2TiO12 (x = 0, 0.5, 1, 1.5, and 2) through the A-site cation substitution. All samples show only the typical peaks of the three-layer Aurivillius phase, validating the formation of single-phase products. Substituting smaller Ca2+ ions caused the crystal structure distortion, transforming the tetragonal I4/mmm structure to the B2cb orthorhombic structure. Structural analysis via XRD and FTIR showed that the substitution of smaller Ca2+ ions decreases in crystal volume and induces the distortion of BO6 octahedra. SEM images indicated anisotropic plate-like grains reduce in size with the substitution of smaller Ca2+ ions. The EDX spectrum reveals the elemental ratio is consistent with the desired composition. With an increasing BO6 distortion, ferroelectric transition temperature (Tc) and ferroelectric polarizations (Pr and Ps) improved. Above room temperature, the pronounced ferroelectric phase was identified in Sr0.5Ca1.5Bi2Nb2TiO12 (x = 1.5) and Ca2Bi2Nb2TiO12 (x = 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Qi, A. Xie, R. Zuo, Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a review. Energy Storage Mater. 45, 541–567 (2022). https://doi.org/10.1016/j.ensm.2021.11.043

    Article  Google Scholar 

  2. H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, S.T. Zhang, B. Nan, H. Tan, Z.G. Ye, Review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 8, 16648–16667 (2020). https://doi.org/10.1039/d0tc04381h

    Article  CAS  Google Scholar 

  3. Z. Fan, L. Li, X. Mei, F. Zhao, H. Li, X. Zhuo, X. Zhang, Y. Lu, L. Zhang, M. Liu, Multilayer ceramic film capacitors for high-performance energy storage: progress and outlook. J. Mater. Chem. A 9, 9462–9480 (2021). https://doi.org/10.1039/d0ta12332c

    Article  CAS  Google Scholar 

  4. M.T. Do, N. Gauquelin, M.D. Nguyen, J. Wang, J. Verbeeck, F. Blom, G. Koster, E.P. Houwman, G. Rijnders, Interfacial dielectric layer as an origin of polarization fatigue in ferroelectric capacitors. Sci. Rep. 10, 1–11 (2020). https://doi.org/10.1038/s41598-020-64451-0

    Article  CAS  Google Scholar 

  5. B.B. Yang, M.Y. Guo, C.H. Li, D.P. Song, X.W. Tang, R.H. Wei, L. Hu, X.J. Lou, X.B. Zhu, Y.P. Sun, Flexible ultrahigh energy storage density in lead-free heterostructure thin-film capacitors. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5128834

    Article  Google Scholar 

  6. R. Caliò, U.B. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. de Petris, C.M. Oddo, Piezoelectric energy harvesting solutions, sensors 14, 4755–4790 (2014). https://doi.org/10.3390/s140304755

    Article  CAS  Google Scholar 

  7. S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011). https://doi.org/10.1111/j.1551-2916.2011.04792.x

    Article  CAS  Google Scholar 

  8. U. De, K.R. Sahu, A. De, Ferroelectric materials for high temperature piezoelectric applications. Solid State Phenom. 232, 235–278 (2015). https://doi.org/10.4028/www.scientific.net/SSP.232.235

    Article  Google Scholar 

  9. B. Aurivillius, Mixed Bismuth oxides with layer lattices 1. The structure type of CaNb2Bi2O9. Arkiv Kemi 1, 463–480 (1949)

    CAS  Google Scholar 

  10. B. Aurivillius, Mixed bismuth oxides with layer lattices 2. Structure of Bi4Ti3O12. Arkiv Kemi 1, 499–512 (1949)

    CAS  Google Scholar 

  11. E.J. Nichols, J. Shi, A. Huq, S.C. Vogel, S.T. Misture, Controlling structure distortions in 3-layer ferroelectric aurivillius oxides. J. Solid State Chem. 197, 475–482 (2013). https://doi.org/10.1016/j.jssc.2012.09.025

    Article  CAS  Google Scholar 

  12. Z.G. Gai, J.F. Wang, M.L. Zhao, W. bin Sun, S.Q. Sun, B.Q. Ming, P. Qi, L. mei Zheng, J. Du, C.M. Wang, S. Zhang, T.R. Shrout, The effect of (Li,Ce) doping in aurivillius phase material Na0.25K0.25Bi4.5Ti4O15. Scr. Mater. 59, 115–118 (2008). https://doi.org/10.1016/j.scriptamat.2008.02.053

    Article  CAS  Google Scholar 

  13. H. Du, Y. Li, H. Li, X. Shi, C. Liu, Relaxor behavior of bismuth layer-structured ferroelectric ceramic with m = 2. Solid State Commun. 148, 357–360 (2008). https://doi.org/10.1016/j.ssc.2008.05.017

    Article  CAS  Google Scholar 

  14. W. Gao, Y. Zhu, Y. Wang, G. Yuan, J.M. Liu, A review of flexible perovskite oxide ferroelectric films and their application. J. Materiomics. 6, 1–16 (2020). https://doi.org/10.1016/j.jmat.2019.11.001

    Article  Google Scholar 

  15. Q. Chang, H. Fan, C. Long, Effect of isovalent lanthanide cations compensation for volatilized A-site bismuth in Aurivillius ferroelectric bismuth titanate. J. Mater. Sci. 28, 4637–4646 (2017). https://doi.org/10.1007/s10854-016-6102-0

    Article  CAS  Google Scholar 

  16. J. Yuan, R. Nie, Q. Chen, D. Xiao, J. Zhu, Structural distortion, piezoelectric properties, and electric resistivity of A-site substituted Bi3TiNbO9-based high-temperature piezoceramics. Mater. Res. Bull. 115, 70–79 (2019). https://doi.org/10.1016/j.materresbull.2019.03.019

    Article  CAS  Google Scholar 

  17. T.W. Surta, A. Manjón-Sanz, E.K. Qian, R.H. Mansergh, T.T. Tran, L.B. Fullmer, M.R. Dolgos, Dielectric and ferroelectric properties in highly substituted Bi2Sr(A)TiNb2O12(A = Ca2+, Sr2+, Ba2+) Aurivillius phases. Chem. Mater. 29, 7774–7784 (2017). https://doi.org/10.1021/acs.chemmater.7b02151

    Article  CAS  Google Scholar 

  18. X. Chen, Z. Lu, F. Huang, J. Min, J. Li, J. Xiao, F. Yang, X. Zeng, Molten salt synthesis and magnetic anisotropy of multiferroic Bi4NdTi3Fe0.7Ni0.3O15 ceramics. J. Alloys Compd. 693, 448–453 (2017). https://doi.org/10.1016/j.jallcom.2016.09.214

    Article  CAS  Google Scholar 

  19. C. Qin, Z.Y. Shen, W.Q. Luo, F.S. Song, Y. Hong, Z.M. Wang, Y.M. Li, Effect of excess Bi on the structure and electrical properties of CaBi2Nb2O9 ultrahigh temperature piezoceramics. J. Mater. Sci. 29, 7801–7804 (2018). https://doi.org/10.1007/s10854-018-8778-9

    Article  CAS  Google Scholar 

  20. P. Xue, H. Wu, Y. Lu, X. Zhu, Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: a review. J. Mater. Sci. Technol. 34, 914–930 (2018). https://doi.org/10.1016/j.jmst.2017.10.005

    Article  CAS  Google Scholar 

  21. Z. Xie, X. Tang, J. Shi, Y. Wang, G. Yuan, J.-M. Liu, Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107247

    Article  Google Scholar 

  22. B.A. Hunter, Rietica—A visual rietveld program (Australian Nuclear Science and Technology Organisation, Australia, 2000)

    Google Scholar 

  23. Q. Hou, B. Yang, C. Ma, Z. Zhou, R. Liang, H. Li, X. Dong, Tailoring structure and piezoelectric properties of CaBi2Nb2O9 ceramics by W6+-Doping. Ceram. Int. 48, 16677–16684 (2022). https://doi.org/10.1016/j.ceramint.2022.02.216

    Article  CAS  Google Scholar 

  24. T.P. Wendari, M. Zulhadjri, Ikhram, Emriadi, Compositional-induced structural transformation and relaxor ferroelectric behavior in Sr/Nb-modified Bi4Ti3O12 Aurivillius ceramics. Ceram. Int. 48, 30598–30605 (2022). https://doi.org/10.1016/j.ceramint.2022.07.003

    Article  CAS  Google Scholar 

  25. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomie distances in Halides and Chaleogenides. Acta Cryst. 32, 751 (1976)

    Article  Google Scholar 

  26. T.P. Zulhadjri, R. Wendari, Y.E. Ramadhani, Putri, Imelda, La3+ substitution induced structural transformation in CaBi4Ti4O15 Aurivillius phases: synthesis, morphology, dielectric and optical properties. Ceram. Int. 47, 23549–23557 (2021). https://doi.org/10.1016/j.ceramint.2021.05.072

    Article  CAS  Google Scholar 

  27. M.S. Haluska, S.T. Misture, Crystal structure refinements of the three-layer Aurivillius ceramics Bi2Sr2-xAxNb2TiO12 (A = ca, Ba, x = 0, 0.5, 1) using combined X-ray and neutron powder diffraction. J. Solid State Chem. 177, 1965–1975 (2004). https://doi.org/10.1016/j.jssc.2004.01.010

    Article  CAS  Google Scholar 

  28. P. Nayak, K. Mitra, S. Panigrahi, Electrical and optical properties of four-layered perovskite ferroelectric ABi4Ti4O15 (with a = Sr, Ba, ca). Mater. Lett. 216, 54–57 (2018). https://doi.org/10.1016/j.matlet.2017.12.105

    Article  CAS  Google Scholar 

  29. W. Ge, K. Liu, T. Chen, S. Deng, L. Shen, P. Yang, M. Liu, Y. Lu, Tunable morphology, bandgap, photocatalysis and magnetic properties of Bi6Fe2Ti3O18 nanocrystals by doping cobalt ions. J. Alloys Compd. 799, 474–480 (2019). https://doi.org/10.1016/j.jallcom.2019.05.344

    Article  CAS  Google Scholar 

  30. Z.Z. Ding, X.Q. Tang, J.C. Ren, X.Z. Liu, Y.K. Chen, Z.Y. Xia, L. Cao, X.Q. Chen, F.J. Yang, Tuning the band gaps of ferroelectric Aurivillius compounds by transition metal substitution. Ceram. Int. 46, 8314–8319 (2020). https://doi.org/10.1016/j.ceramint.2019.12.062

    Article  CAS  Google Scholar 

  31. M.A. Wederni, S. Kraiem, R. Mnassri, H. Rahmouni, K. Khirouni, Ytterbium doping effects on structural, optical and electrical properties of Bi4Ti3O12 system. Ceram. Int. 44, 21893–21901 (2018). https://doi.org/10.1016/j.ceramint.2018.08.300

    Article  CAS  Google Scholar 

  32. P. Nayak, A.K. Singh, Correlation between orthorhombic distortion with relaxation and conduction mechanism of Gd3+ modified SrBi4Ti4O15 ceramics. Ceram Int. (2018). https://doi.org/10.1016/j.ceramint.2018.09.076

    Article  Google Scholar 

  33. A.A. Bokov, Z.G. Ye, Dielectric relaxation in relaxor ferroelectrics. J. Adv. Dielectr. 2, 1241010 (2012). https://doi.org/10.1142/S2010135X1241010X

    Article  CAS  Google Scholar 

  34. Y. González-Abreu, A. Peláiz-Barranco, J.D.S. Guerra, Y. Gagou, P. Saint-Grégoire, From normal ferroelectric transition to relaxor behavior in Aurivillius ferroelectric ceramics. J. Mater. Sci. 49, 7437–7444 (2014). https://doi.org/10.1007/s10853-014-8448-0

    Article  CAS  Google Scholar 

  35. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1–33 (2018). https://doi.org/10.1002/adfm.201803665

    Article  CAS  Google Scholar 

  36. K. Wang, J. Ouyang, M. Wuttig, Y.Y. Zhao, H. Cheng, Y. Zhang, R. Su, J. Yan, X. Zhong, F. Zeng, Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors. Adv. Energy Mater. 10, 1–8 (2020). https://doi.org/10.1002/aenm.202001778

    Article  CAS  Google Scholar 

  37. S. Guan, B. Wang, W. Shi, F. Zhang, Y. Wu, H. Xu, J. Xing, Q. Chen, Realization of high piezoelectric performance in bismuth titanate niobate via B-site mixed-valance doping. J. Eur. Ceram. Soc. 43, 928–938 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.10.062

    Article  CAS  Google Scholar 

  38. Z. Peng, Y. Chen, Q. Chen, N. Li, X. Zhao, C. Kou, D. Xiao, J. Zhu, Correlation between lattice distortion and electrical properties on Bi4Ti3O12 ceramics with W/Ni modifications. J. Alloys Compd. 590, 210–214 (2014). https://doi.org/10.1016/j.jallcom.2013.12.096

    Article  CAS  Google Scholar 

  39. T.P. Zulhadjri, M. Wendari, Y.E. Ikhram, U. Putri, Septiani, Imelda, enhanced dielectric and ferroelectric responses in La3+/Ti4+ co-substituted SrBi2Ta2O9 Aurivillius phase. Ceram. Int. 48, 10328–10332 (2022). https://doi.org/10.1016/j.ceramint.2022.01.307

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Faculty of Mathematics and Natural Sciences of Universitas Andalas under the PNBP Research Grant (17/UN.16.03.D/PP/FMIPA/2022). Wendari also acknowledges the facilities and scientific and technical support from Advanced Nuclear Materials Laboratories - Nuclear Energy Research Organization, National Research, and Innovation Agency through E-Layanan Sains-BRIN.

Author information

Authors and Affiliations

Authors

Contributions

TPW conceptualized the research scheme and wrote the original manuscript. AR performed the material preparation and visualized the data analysis. Z validate the data and wrote the manuscript. YEP reviewed and edited the manuscript. E reviewed and edited the manuscript. AI investigated dan validated the data experiment. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tio Putra Wendari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendari, T.P., Rizki, A., Zulhadjri et al. Salt-flux synthesis of bismuth layer-structured Ca-doped Sr2Bi2Nb2TiO12: the effect of cation substitution on structure, ferroelectric and optical properties. J Mater Sci: Mater Electron 34, 1282 (2023). https://doi.org/10.1007/s10854-023-10725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10725-y

Navigation