Skip to main content
Log in

Effects of (Al0.5Nb0.5)4+ on the phase constitution, microtopography, and microwave dielectric properties for BaZn2Ti4O11 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, we synthesized BaZn1.98Cu0.02Ti4O11 ceramics co-doped with a complex ion (Al0.5Nb0.5)4+, resulting in improved microwave characteristics. Our analysis revealed that all BaZn1.98Cu0.02Ti4–x(Al0.5Nb0.5)xO11 (BZCTAN) samples formed the main phase of BaZn2Ti4O11. Increasing the number of dopants increased the bulk density, which in turn increased the dielectric constant (εr) and temperature coefficient of the resonance frequency (τf) values consistently. The quality factor (Q×f) showed a tendency to increase and then decrease as the x value increased. Results indicated that a moderate content of (Al0.5Nb0.5)4+ can improve the Q×f value. However, an excess of (Al0.5Nb0.5)4+ resulted the formation of the second phase of Ba3Nb4Ti4O21, which reduced the grain size and the Q×f value in BZCTAN samples. At last, the BaZn1.98Cu0.02Ti3.8(Al0.5Nb0.5)0.2O11 ceramic sample sintered at 1170 °C demonstrated good microwave dielectric properties of ɛr = 30.6, Q×f = 53,126 GHz, and τf = − 32.3 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. C. Du, D. Zhou, R.-T. Li, H.-T. Chen, G.-H. Zhou, B. Tang, M.A. Darwish et al., Fabrication of wideband low-profile dielectric patch antennas from temperature stable 0.65CaTiO3–0.35LaAlO3 microwave dielectric ceramic. Adv. Electron. Mater. 8(9), 21014 (2022)

    Google Scholar 

  2. T. Zhou, Y. Liu, K. Song, L. Xue, P. Xu, A. Khesro, D. Wang et al., New low-εr, temperature stable Mg3B2O6-Ba3(VO4)2 microwave composite ceramic for 5G application. J. Am. Ceram. Soc. 104, 3818–3822 (2021)

    CAS  Google Scholar 

  3. F.-F. Wu, D. Zhou, C. Du, B.-B. Jin, C. Li, Z.-M. Qi, S. Sun et al., Design of a Sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1–xBix)NbO4 (x = 0–0.15) microwave dielectric ceramics. ACS Appl. Mater. Inter. 14, 7030–7038 (2022)

    CAS  Google Scholar 

  4. L.-X. Pang, D. Zhou, X.-G. Yao, H.-X. Lin, C. Chen, Z.-Q. Shi, F. Hussain et al., Phase transitions and microwave dielectric behaviors of the (Bi1 – xLi0.5xY0.5x)(V1 – xMox)O4 ceramics. J. Am. Ceram. Soc. 106, 3455–3461 (2023)

    CAS  Google Scholar 

  5. Z. Xiong, X. Zhang, B. Tang, C. Yang, Z. Fang, S. Zhang, Characterization of structure and properties in CaO-Nd2O3-TiO2 microwave dielectric ceramic modified by Al. Mater. Charact. 2O3, 111108 (2021)

    Google Scholar 

  6. Z. Xiong, B. Tang, X. Zhang, C. Yang, Z. Fang, S. Zhang, Low-fire processing and microwave dielectric properties of LB glass-doped Ba3.75Nd9.5Ti17.5(Cr0.5Nb0.5)0.5O54 ceramic. J. Am. Ceram. Soc. 104, 1726–1739 (2021)

    CAS  Google Scholar 

  7. Z. Xiong, X. Zhang, W. Wu, L. Li, B. Tang, Preparation and characterization of the temperature-stable CaO-Li2O-Nd2O3-TiO2 microwave dielectric ceramics. J. Mater. Sci. Mater. Electron. 34, 610 (2023)

    CAS  Google Scholar 

  8. Z. Xiong, Y. Han, X. He, Q. Lei, R. Zhao, W. Huang, X. Zhang et al., Study of BaO–Nd2O3–TiO2 ceramics doped with Li2O–ZnO–B2O3 glass for LTCC technology. J. Mater. Sci. Mater. Electron 34, 921 (2023)

    CAS  Google Scholar 

  9. A. Ali, A. Zaman, A.H. Jabbar, V. Tirth, A. Algahtani, A. Alhodaib, I. Ullah et al., Effects of strontium on the structural, optical, and microwave dielectric properties of Ba2Ti9O20 ceramics synthesized by a mixed oxide route. ACS Omega 7, 25573–25579 (2022)

    CAS  Google Scholar 

  10. T. Luo, Q. Yang, H. Yu, J. Liu, Formation mechanism and microstructure evolution of Ba2Ti9O20 ceramics by reaction sintering method. J. Am. Ceram. Soc. 103, 1079–1087 (2020)

    CAS  Google Scholar 

  11. M. Yang, S. Wei, S. Su, M. Chao, J. Guo, H. Wang, X. Tang et al., The influence of ZrMgMo3O12 on the dielectric properties of BaTi4O9, Ceram. Ceram. Int. 46, 10250–10255 (2020)

    CAS  Google Scholar 

  12. H. Guo, P. Zhu, Q. Lin, M. Gao, D. Tang, X. Zheng, Sintering characteristics and microwave dielectric properties of BaTi4O9 ceramics with CuO–TiO2 addition. Crystals 13, 566 (2023)

    CAS  Google Scholar 

  13. S. Yu, B. Tang, S. Zhang, X. Zhang, Temperature stable high-Q microwave dielectric ceramics in (1-x)BaTi4O9-xBaZn2Ti4O11 system. Mater. Lett. 67, 293–295 (2012)

    CAS  Google Scholar 

  14. R.S. Roth, C.J. Rawn, C.G. Lindsay, W. Wong-Ng, Phase equilibria and crystal chemistry of the binary and ternary barium polytitanates and crystallography of the barium zinc polytitanates. J. Solid State Chem. 104, 99–118 (1993)

    CAS  Google Scholar 

  15. W. Guoqing, W. Shunhua, S. Hao, Microwave dielectric ceramics in the BaO–TiO2–ZnO system doped with MnCO3 and SnO2. Mater. Lett. 59, 2229–2231 (2005)

    Google Scholar 

  16. S. Yu, B. Tang, S. Zhang, X. Zhou, Effect of ZnO ratio on sintering behavior and microwave dielectric properties of BaO–ZnO–TiO2 ceramics. J. Alloy Compd. 505, 814–817 (2010)

    CAS  Google Scholar 

  17. S. Yu, M. Long, B. Tang, S. Zhang, X. Zhou, Effect of TiO2 content on the microwave dielectric properties of BaO-ZnO-TiO2 ceramics. Sci. China Technol. Sci. 54, 1532–1536 (2011)

    CAS  Google Scholar 

  18. A.G. Belous, O.V. Ovchar, M. Macek. Krzmanc, M. Valant, The homogeneity range and the microwave dielectric properties of the BaZn2Ti4O11 ceramics. J. Eur. Ceram. Soc. 26, 3733–3739 (2006)

    CAS  Google Scholar 

  19. B. Tang, S. Yu, H. Chen, S. Zhang, X. Zhou, The influence of Cu substitution on the microwave dielectric properties of BaZn2Ti4O11 ceramics. J. Alloy Compd. 551, 463–467 (2013)

    CAS  Google Scholar 

  20. S. Yu, S. Zhang, B. Tang, X. Zhou, Y. Fang, Microwave dielectric properties of BaO–2(1 – x)ZnO–xNd2O3–4TiO2 (x = 0–1.0) ceramics. Ceram. Int. 38, 613–618 (2012)

    CAS  Google Scholar 

  21. S.Q. Yu, B. Tang, X. Zhang, S.R. Zhang, X.H. Zhou, Improved high-Q microwave dielectric ceramics in CuO-Doped BaTi4O9–BaZn2Ti4O11 system. J. Am. Ceram. Soc 95, 1939–1943 (2012)

    CAS  Google Scholar 

  22. S.Q. Yu, S.M. Sun, B. Tang, S.R. Zhang, Low temperature sintering of BaO–ZnO–TiO2 Ceramics for LTCC applications, Adv. Mater. Res. 476–478 (2012)

  23. Z. Xiong, X. Zhang, Z. Fang, W. Wu, L. Li, B. Tang, S. Zhang, Characterization of structural and electrical properties of Ca0.61Nd0.26TiO3 ceramic tailored by complex ions (Al0.5Nb0.5)4+. J. Alloy Compd. 899, 163234 (2022)

    CAS  Google Scholar 

  24. Z. Xiong, B. Tang, Z. Fang, C. Yang, S. Zhang, Crystal structure, Raman spectroscopy and microwave dielectric properties of Ba3.75Nd9.5Ti18-z(Al1/2Nb1/2)zO54 ceramics. J. Alloy Compd. 723, 580–588 (2017)

    CAS  Google Scholar 

  25. T. Zhang, R. Zuo, J. Zhang, M.D. Structure, Properties, and low-temperature sintering of Acceptor/Donor codoped Li2Ti1-x(Al0.5Nb0.5)xO3 Ceramics. J. Am. Ceram. Soc. 99, 825–832 (2016)

    CAS  Google Scholar 

  26. R. Freer, F. Azough, Microstructural engineering of microwave dielectric ceramics. J. Eur. Ceram. Soc. 28, 1433–1441 (2008)

    CAS  Google Scholar 

  27. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microwave Theory Tech. 8, 402–410 (1960)

    Google Scholar 

  28. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microwave Theory Tech. 18, 476–485 (1970)

    Google Scholar 

  29. H. Chen, Z. Zhang, Z. Xiong, B. Tang, Y. Yuan, S. Zhang, Microwave dielectric properties of (1-x)Ba3.75Nd9.5Cr0.25Nb0.25Ti17.5O54-xNdAlO3 ceramics. J. Am. Ceram. Soc. 100, 4058–4065 (2017)

    CAS  Google Scholar 

  30. W. Luo, L. Li, S. Yu, J. Li, B. Zhang, J. Qiao, S. Chen, Bond theory, terahertz spectra, and dielectric studies in donor-acceptor (Nb-Al) substituted ZnTiNb2O8 system. J. Am. Ceram. Soc. 102, 4612–4620 (2019)

    CAS  Google Scholar 

  31. J.H. Zhang, H.F. Liu, W. Sun, H.Y. Lu, D.X. Tang, J. Meng, Influence of structure and ionic radius on solubility limit in the Mg–Re systems, Mater. Sci. Forum 561–565,  143–146 (2007)

  32. A.E. Ringwood, The principles governing trace element distribution during magmatic crystallization part I: the influence of electronegativity.  Geochim. Cosmochim. Acta 7, 189–202 (1955)

    CAS  Google Scholar 

  33. R.D. Shannon, C.T. Prewitt, Effective ionic radii and crystal chemistry. J. Inorg. Nucl. Chem. 32, 1427–1441 (1970)

    CAS  Google Scholar 

  34. M. Pazoki, T. Edvinsson, Metal replacement in perovskite solar cell materials: chemical bonding effects and optoelectronic properties. Sustain. Energy Fuels. 2, 1430–1445 (2018)

    CAS  Google Scholar 

  35. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Google Scholar 

  36. J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, Al3+, Nb5+) co–doped CaCu3Ti4O12: an extended approach for acceptor–donor heteroatomic substitutions to achieve high–performance giant–dielectric permittivity. J. Eur. Ceram. Soc. 38, 137–143 (2018)

    Google Scholar 

  37. J. Xufeng, D. Shihua, S. Tianxiu, L. Xu, P. Xiaosong, Y. Lihua, Dielectric properties of BaTiO3 ceramics doped with Al3+ and Nb5+. Ferroelectrics 488, 10–17 (2015)

    Google Scholar 

  38. X. Liang, Z. Meng, W. Wu, Effect of acceptor and donor dopants on the dielectric and tunable properties of barium strontium titanate. J. Am. Ceram. Soc. 87, 2218–2222 (2004)

    CAS  Google Scholar 

  39. Y.-M. Chiang, T. Takagi, Grain-boundary chemistry of barium titanate and strontium titanate: I, high-temperature equilibrium space charge. J. Am. Ceram. Soc. 73, 3278–3285 (1990)

    CAS  Google Scholar 

  40. Z. Xiong, B. Tang, F. Luo, H. Yang, X. Zhang, C. Yang, Z. Fang et al., Characterization of structure, chemical bond and microwave dielectric properties in Ca0.61Nd0.26TiO3 ceramic substituted by chromium for titanium. J. Alloy Compd. 835, 155249 (2020)

    CAS  Google Scholar 

  41. Z. Fang, B. Tang, Y. Yuan, X. Zhang, S. Zhang, Structure and microwave dielectric properties of the Li2/3(1-x)Sn1/3(1-x)MgxO systems (x = 0–4/7). J. Am. Ceram. Soc. 101, 252–264 (2018)

    CAS  Google Scholar 

  42. S. Chen, L. Li, S. Yu, H. Zheng, Z. Sun, High dielectric constant and high-Q in microwave ceramics of SrTiO3 co-doped with aluminum and niobium. J. Am. Ceram. Soc. 101, 1835–1840 (2018)

    CAS  Google Scholar 

  43. Y. Chen, M. Zhang, H. Yang, E. Li, Cu1/3Nb2/3)4+ ionic substituting effects, low-temperature sintering behaviors, and improved temperature stability of Ba3Nb4Ti4O21 microwave dielectric ceramics. Ceram. Int. 48, 12118–12125 (2022)

    CAS  Google Scholar 

  44. S.H. Yoon, D.-W. Kim, S.-Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    CAS  Google Scholar 

Download references

Funding

This work is supported by the Key Research and Development Program of Sichuan Province (Grant No. 2022YFG0226) and the Scientific Research Foundation of CUIT (Grant No. KYTZ202179).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JM and ZX.The first draft of the manuscript was written by JM, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhe Xiong.

Ethics declarations

Conflict of interest

All authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xiong, Z., Xiong, Y. et al. Effects of (Al0.5Nb0.5)4+ on the phase constitution, microtopography, and microwave dielectric properties for BaZn2Ti4O11 ceramics. J Mater Sci: Mater Electron 34, 1307 (2023). https://doi.org/10.1007/s10854-023-10724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10724-z

Navigation