Skip to main content
Log in

Comment on photoconduction measurements of semiconductors: the effect of temperature rises

  • Comments
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photoconductive methods have been widely employed for evaluating photo-electronic responses in semiconductors, while those are likely to be affected by bolometric effects induced by temperature rises, which have been neglected in many studies. We highlight that photo-thermal currents tend to become more dominant than photo-currents in semiconductors that have bandgap energies narrower than ~ 0.5 eV and carrier lifetimes shorter than ~ 1 ns, an example being the phase-change film Ge2Sb2Te5. We also discuss some ideas which could evaluate the photoconductivity in such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960)

    Google Scholar 

  2. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  3. S. Kasap (ed.), Photoconductivity and Photoconductive Materials, vol. 1 and 2 (Wiley, Hoboken, 2020)

    Google Scholar 

  4. A. Mandelis (ed.), Photoacoustic and Thermal Wave Phenomena in Semiconductors (North Holland, New York, 1987)

    Google Scholar 

  5. S.E. Bialkowski, N.G.C. Astrath, M.A. Proskurnin, Photothermal Spectroscopy Methods, 2nd edn. (Wiley, Hoboken, 2019)

    Book  Google Scholar 

  6. J.A. Becker, C.B. Green, G.L. Pearson, Bell System Technical J. 26, 170 (1947)

    Article  Google Scholar 

  7. Y. Zhang, S. Hosono, N. Nagai, S.-H. Song, K. Hirakawa, J. Appl. Phys. 125, 151602 (2019)

    Article  Google Scholar 

  8. K. Tanaka, J. Appl. Phys. 101, 026111 (2007)

    Article  Google Scholar 

  9. N. Qamhieh, S.T. Mahmoud, H. Ghamlouche, M.L. Benkhedir, J. Optoelectron. Adv. Mater. 10, 1448 (2008)

    Google Scholar 

  10. J. Luckas, S. Kremers, D. Krebs, M. Salinga, M. Wuttig, C. Longeaud, J. Appl. Phys. 110, 013719 (2011)

    Article  Google Scholar 

  11. Z. Ovadyahu, Phys. Rev. Lett. 115, 046601 (2015)

    Article  CAS  Google Scholar 

  12. M. Kaes, M. Salinga, Sci. Rept. 6, 31699 (2016)

    Article  CAS  Google Scholar 

  13. S.G. Sarwat, N. Youngblood, Y.-Y. Au, J.A. Mol, C.D. Wright, H. Bhaskaran, A.C.S. Appl, Mater. Interfaces 10, 44906 (2018)

    Article  CAS  Google Scholar 

  14. R. Golovchak, J. Plummer, A. Kovalskiy, Y. Holovchak, T. Ignatova, K. Nowlin, A. Trofe, Y. Shpotyuk, C. Boussard-Pledel, B. Bureau, A.C.S. Appl, Electron. Mater. 4, 5397 (2022)

    CAS  Google Scholar 

  15. M. Lax, J. Appl. Phys. 48, 3919 (1977)

    Article  CAS  Google Scholar 

  16. Y.-L. Gan, L. Wang, X.-Q. Su, S.-W. Xu, X. Shen, R.-P. Wang, J. Raman Spectrosc. 45, 377 (2014)

    Article  CAS  Google Scholar 

  17. V. Chazapis, H.A. Blom, K.L. Vodopyanov, A.G. Norman, C.C. Phillips, Phys. Rev. B 52, 2516 (1995)

    Article  CAS  Google Scholar 

  18. E. Marín, I. Riech, P. Díaz, J.J. Alvarado-Gil, R. Baquero, J.G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, M. Vargas, J. Appl. Phys. 83, 2604 (1998)

    Article  Google Scholar 

  19. Y.P. Varshni, Physica 34, 149 (1967)

    Article  CAS  Google Scholar 

  20. N. Miura, S. Tanaka, Appl. Phys. Lett. 12, 374 (1968)

    Article  CAS  Google Scholar 

  21. W.P. Dumke, Phys. Rev. 132, 1998 (1963)

    Article  Google Scholar 

  22. M. Niemeyer, P. Kleinschmidt, W. Walker, L.E. Mundt, C. Timm, R. Lang, T. Hannappel, D. Lackner, AIP Adv. 9, 045034 (2019)

    Article  Google Scholar 

  23. R.A. Street, Phys. Rev. B 17, 3984 (1978)

    Article  CAS  Google Scholar 

  24. G.J. Adriaenssens, S.D. Baranovskii, W. Fuhs, J. Jansen, Ö. Öktü, Phys. Rev. B 51, 9661 (1995)

    Article  CAS  Google Scholar 

  25. M. Tachiya, K. Seki, Phys. Rev. B 82, 085201 (2010)

    Article  Google Scholar 

  26. J.A. Schmidt, D.M. Goldie, Thin Solid Films 696, 137793 (2020)

    Article  Google Scholar 

  27. T. Aoki, J. Optoelectron. Adv. Mater. 11, 1044 (2009)

    CAS  Google Scholar 

  28. R. Stachowitz, M. Schubert, W. Fuhs, Phys. Rev. B 52, 10906 (1995)

    Article  CAS  Google Scholar 

  29. T.D. Moustakas, K. Weiser, Phys. Rev. B 12, 2448 (1975)

    Article  CAS  Google Scholar 

  30. G. Zhang, F. Gan, S. Lysenko, H. Liu, J. Appl. Phys. 101, 033127 (2007)

    Article  Google Scholar 

  31. M.J. Shu, I. Chatzakis, Y. Kuo, P. Zalden, A.M. Lindenberg, Appl. Phys. Lett. 102, 201903 (2013)

    Article  Google Scholar 

  32. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 74th edn. (CRC Press, Boca Ranton, 1993)

    Google Scholar 

  33. K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials 2nd Ed. (Springer, Cham, 2021) Chap. 6.

  34. A. Matsuda, H. Mizuno, T. Takayama, M. Saito, M. Kikuchi, Appl. Phys. Lett. 24, 314 (1974)

    Article  CAS  Google Scholar 

  35. P. Khan, P. Acharja, A. Joshy, A. Bhattacharya, D. Kumar, K.V. Adarsh, J. Non-Cryst, Solids 426, 72 (2015)

    CAS  Google Scholar 

  36. K. Tanaka, Solid State Commun. 34, 201 (1980)

    Article  CAS  Google Scholar 

  37. K. Shimakawa, J. Optoelectron. Adv. Mater. 9, 2973 (2007)

    CAS  Google Scholar 

  38. T.V. Moreno, V.S. Zanuto, N.G.C. Astrath, G.R. Silva, E.J.S. Fonseca, S.T. Souza, D.H. Zhao, H. Jain, L.C. Malacarne, Opt. Mater. 94, 9 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor S. Kasap for valuable suggestions and supports for preparing the manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KT had written the first draft of the manuscript, and NY commented on that, which was modified therein. The two authors read and approved the final manuscript.

Corresponding author

Correspondence to Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Yoshida, N. Comment on photoconduction measurements of semiconductors: the effect of temperature rises. J Mater Sci: Mater Electron 34, 1311 (2023). https://doi.org/10.1007/s10854-023-10716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10716-z

Navigation