Skip to main content
Log in

Enhancing the photocatalytic performance of ZnO:Gd films produced by spray pyrolysis using methylene blue pollutant

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Gd-doped ZnO (ZnO:Gd) films were produced on glass substrates by ultrasonic spray pyrolysis (USP) technique. It is aimed to get better properties of ZnO films for photocatalytic and photovoltaic applications by doping Gd element. The effect of Gd doping on the structural, optical, surface, and photocatalytic properties of the films was investigated. The wettability of the samples was evaluated using water contact angle measurements. Methylene blue (MB) was chosen as organic pollutant to determine the photocatalytic performance of ZnO:Gd films. Using MB as photocatalyst in 7%-doped ZnO:Gd film, it was successfully degraded at a rate of 92%. Gd doping caused an increase in the photocatalytic activity and organic pollutant adsorption capacity of ZnO films. From the photocatalytic activity tests, it was determined that especially the increasing amount of additive affected the photocatalytic degradation. As a result, Gadolinium (Gd) doping on ZnO films is an effective way to increase the use potential of pure ZnO films in photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within this article.

References

  1. Z. Chen, W. Zhong, Z. Liang, W. Li, G. He, Y. Wang, W. Li, Y. Xie, Q. He, Photocatalytic activity enhancement of anatase TiO2 by using TiO. J. Nanomater. (2014). https://doi.org/10.1155/2014/298619

    Article  Google Scholar 

  2. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. Photochem. Rev. 13, 169–189 (2012)

    CAS  Google Scholar 

  3. F. Huang, A. Yan, H. Zhao, Semiconductor photocatalysis (IntechOpen, London, 2016)

    Google Scholar 

  4. A.D. Folawewo, M.D. Bala, Nanocomposite Zinc oxide-based photocatalysts: recent developments in Their use for the treatment of dye-polluted wastewater. Water 3899, 14 (2022)

    Google Scholar 

  5. S. Bhatia, N. Verma, Photocatalytic activity of ZnO nanoparticles with optimization of defects. Mater. Res. Bull. 95, 468–476 (2017)

    CAS  Google Scholar 

  6. S.H. Liu, Y.S. Wei, J.S. Lu, Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/RGO photocatalysts. Chemosphere 154, 118–123 (2016)

    CAS  Google Scholar 

  7. S.G. Kumar, K.S.R. Koteswara Rao, Tungsten-based nanomaterials (WO3&Bi2WO6): modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl. Surf. Sci. 355, 939–958 (2015)

    Google Scholar 

  8. N. Shimosako, H. Sakama, Basic photocatalytic activity of ZrO2 thin films fabricated by a sol-gel method under UV-C irradiation. Thin Solid Films (2021). https://doi.org/10.1016/j.tsf.2021.138786

    Article  Google Scholar 

  9. M. Jothibas, C. Manoharan, S. Johnson Jeyakumar, P. Praveen, I. Joseph Panneerdoss, Photocatalytic activity of spray deposited ZrO2 nano-thin films on methylene blue decolouration. J. Mater. Sci. Mater. Electron. 27, 851–859 (2016)

    Google Scholar 

  10. S. Wannapop, A. Somdeea, T. Bovornratanaraks, Experimental study of thin film Fe2O3/TiO2 for photocatalytic Rhodamine B degradation. Inorg. Chem. Commun. (2021). https://doi.org/10.1016/j.inoche.2021.108585

    Article  Google Scholar 

  11. A. El Hamidi, E. El Mahboub, K. Meziane, A. El Hichou, A. Almaggoussi, the effect of electronegativity on optical properties of Mg doped ZnO. J. Optic. (2021). https://doi.org/10.1016/j.ijleo.2021.167070

    Article  Google Scholar 

  12. S. Karakaya, Annealing effect on structural and optical properties of ZnO films prepared by ultrasonic spray pyrolysis. Anadolu. Univ. J. Sci. Technol. – A – Appl Sci. Eng. 17, 670–676 (2016)

    Google Scholar 

  13. E. Sener, O. Bayram, U.C. Hasar, O. Simsek, Structural and optical properties of RF sputtered ZnO thin films: annealing effect. Physica B 605, 412–421 (2021)

    Google Scholar 

  14. A.G. Martinez, G. Santana, F. Güell, P.R.M. Alanis, A. Dutt, Photoluminescence of ZnO nanowires: a review. Nanomater. 10, 857 (2020)

    Google Scholar 

  15. A.T. Le, M. Ahmadipour, S.Y. Pung, A review on ZnO-based piezoelectric nanogenerators: synthesis, characterization techniques, performance enhancement and applications. J. Alloys. Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156172

    Article  Google Scholar 

  16. X. Wang, Y. Dai, R. Liu, X. He, S. Li, Z.L. Wang, Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing. ACS Nano 11, 8339–8345 (2017)

    CAS  Google Scholar 

  17. M. Hassan, L. Jiaji, P. Lee, R.S. Rawat, Catalyst free growth of ZnO thin film nanostructures on Si substrate by thermal evaporation. Appl Phys A (2021). https://doi.org/10.1007/s00339-021-04650-2

    Article  Google Scholar 

  18. F. Güell, P.R. Martínez-Alanis, S. Roso, C.I. Salas-Pérez, M.F. García-Sánchez, G. Santana, B.M. Monroy, Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers. Mater. Res. Express (2016). https://doi.org/10.1088/2053-1591/3/6/065013

    Article  Google Scholar 

  19. A.A. Sulaiman, GGh. Ali, A.I. Thanon, Synthesis and study of ZnO thin films Using CVD technique for waveguide sensor applications. J. Nanostruct. 2, 1–11 (2022)

    Google Scholar 

  20. T. Chitradevi, A.J. Lenus, N.V. Jaya, Structure, morphology and luminescence properties of sol–gel method synthesized pure and Ag-doped ZnO nanoparticles. Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab5c53

    Article  Google Scholar 

  21. M. Shkir, J. Hakami, M.M. Hossain, N.S. Awwad, A. Khan, Excellent photo-detection properties of cerium doped ZnO device fabricated by spray pyrolysis technique. Inorg. Chem. Commun. (2022). https://doi.org/10.1016/j.inoche.2022.109439

    Article  Google Scholar 

  22. N.A. Alshehri, A.R. Lewis, C. Pleydell-Pearce, T.G.G. Maffeis, Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. J. Saudi Chem. Soc. 22, 538–545 (2018)

    CAS  Google Scholar 

  23. M. Sathya, G. Selvan, M. Karunakaran, K. Kasirajan, S. Usha, M. Logitha, S. Prabakaran, P. Baskaran, Synthesis and characterization of cadmium doped on ZnO thin films prepared by SILAR method for photocatalytic degradation properties of MB under UV irradiation. Eur. Phys. J. Plus. (2023). https://doi.org/10.1140/epjp/s13360-023-03667-1

    Article  Google Scholar 

  24. M. Opel, S. Geprägs, M. Althammer, T. Brenninger, R. Gross, Laser molecular beam epitaxy of ZnO thin films and heterostructures. J. Phys. D: Appl. Phys. (2014). https://doi.org/10.1088/0022-3727/47/3/034002

    Article  Google Scholar 

  25. A. Waag, Th. Gruber, K. Thonke, R. Sauer, R. Klinga, C. Kirchnera, H. Ress, ZnO metal–organic vapor phase epitaxy: present state and prospective applications. J. Alloys Compd. 371, 77–81 (2004)

    CAS  Google Scholar 

  26. A. Anu, R. Linu, M. Johny, N.S. Nirmala Jothi, P. Sagayaraj, Solvothermal synthesis characterization and photocatalytic activity of ZnO nanoparticle. Mater Today Proc 8, 94–98 (2019)

    Google Scholar 

  27. L. Guo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, G.K.L. Wong, Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl. Phys. Lett. 76, 2901–2903 (2000)

    CAS  Google Scholar 

  28. J. Cui, Zinc oxide nanowires. Mater. Charact. 64, 43–52 (2012)

    CAS  Google Scholar 

  29. P.K. Aspoukeh, A.A. Barzinjy, S.M. Hamad, Synthesis, properties and uses of ZnO nanorods: a mini review. Int. Nano Lett. 12, 153–168 (2022)

    CAS  Google Scholar 

  30. J.J. Wu, S.C. Liu, C.T. Wu, K.H. Chen, L.C. Chen, Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett. 81, 1312–1314 (2002)

    CAS  Google Scholar 

  31. M. Hong, J. Meng, H. Yu, J. Du, Y. Ou, Q. Liao, Z. Kang, Z. Zhang, Y. Zhang, Ultra-stable ZnO nanobelts in electrochemical environments. Mater. Chem. Front. 5, 430–437 (2021)

    CAS  Google Scholar 

  32. I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, A. Terrasi, Optimization of ZnO:Al/Ag/ZnO: Al structures for ultra-thin high-performance transparent conductive electrodes. Thin Solid Films 520, 4432–4435 (2012)

    CAS  Google Scholar 

  33. P. Xian Gao, W. Mai, Z.L. Wang, Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Lett. 6, 2536–2543 (2006)

    Google Scholar 

  34. W.L. Hughes, Z.L. Wang, Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.1853514

    Article  Google Scholar 

  35. X. Cao, H. Zeng, M. Wang, X. Xu, M. Fang, S. Ji, L. Zhang, Large scale fabrication of quasi-aligned ZnO stacking nanoplates. J. Phys. Chem. C (2008). https://doi.org/10.1021/jp800499r

    Article  Google Scholar 

  36. Y. Wang, X. Li, N. Wang, X. Quan, Y. Chen, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Sep. Purif. Technol. 62, 727–732 (2008)

    CAS  Google Scholar 

  37. W. Gao, Z. Li, Nanostructures of zinc oxide. Int. J. Nanotechnol. 6, 245–257 (2009)

    CAS  Google Scholar 

  38. M. Isik, N.M. Gasanly, Gd-doped ZnO nanoparticles: synthesis, structural and thermoluminescence properties. J. Lumin. 207, 220–225 (2019)

    CAS  Google Scholar 

  39. R. Dhir, Photocatalytic degradation of methyl orange dye under UV irradiation in the presence of synthesized PVP capped pure and gadolinium doped ZnO nanoparticles. Chem. Phys. Lett. (2020). https://doi.org/10.1016/j.cplett.2020.137302

    Article  Google Scholar 

  40. N.K. Divya, P.P. Pradyumnan, High dielectric constant, low loss and high photocatalytic activity in Gd doped ZnO systems. Mater. Res. Express (2017). https://doi.org/10.1088/2053-1591/aa522d

    Article  Google Scholar 

  41. P. Kaur, S. Kumar, C.L. Chen, Y. Hsu, T. Chan, C. Dong, C. Srivastava, A. Singh, S.M. Rao, Investigations on structural magnetic and electronic structure of Gd-doped ZnO nanostructures synthesized using sol–gel technique. Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-9707-5

    Article  Google Scholar 

  42. S. Panwar, G.K. Upadhyay, L.P. Purohit, Gd-doped ZnO:TiO2 heterogenous nanocomposites for advance oxidation process. Mater. Res. Bull (2022). https://doi.org/10.1016/j.materresbull.2021.111534

    Article  Google Scholar 

  43. B. Palanivel, R.R. Macadangdang Jr., Md.S. Hossain, F.A. Alharthi, M. Kumar, S. Jih-Hsing Chang, Gedi, Rare earth (Gd, La) co-doped ZnO nanoflowers for direct sunlight driven photocatalytic activity. J. Rare Earths 41, 77–84 (2023)

    CAS  Google Scholar 

  44. J. Akhtar, M.B. Tahir, M. Sagir, H.S. Bamufleh, Improved photocatalytic performance of Gd and Nd co-doped ZnO nanorods for the degradation of methylene blue. Ceram. Int. 46, 11955–11961 (2020)

    CAS  Google Scholar 

  45. D. Sahu, N.R. Panda, B.S. Acharya, Effect of Gd doping on structure and photoluminescence properties of ZnO nanocrystals. Mater. Res. Express (2017). https://doi.org/10.1088/2053-1591/aa9597

    Article  Google Scholar 

  46. H.S. Alanazi, N. Ahmad, F.A. Alharthi, Synthesis of Gd/N co-doped ZnO for enhanced UV-vis and direct solar-light-driven photocatalytic degradation. RSC Adv. 11, 10194–10202 (2021)

    CAS  Google Scholar 

  47. AN Fadzilah R Othman A Miskon M Sahdan S Tawil (2017) In AIP Conference Proceedings AIP Publishing LLC 020028

  48. A. Smaalia, S. Abdelli-Messaci, S. Lafane, A. Mavlonov, J. Lenzner, S. Richter, M. Kechouane, O. Nemraoui, K. Ellmer, Pulsed laser deposited transparent and conductive V-doped ZnO thin films. Thin Solid Films (2020). https://doi.org/10.1016/j.tsf.2020.137892

    Article  Google Scholar 

  49. P. Murmu, J. Kennedy, B. Ruck, G. Williams, A. Markwitz, S. Rubanov, A. Suvorova, Effect of annealing on the structural, electrical and magnetic properties of Gd-implanted ZnO thin films. J. Mater. Sci. 47, 1119–1126 (2012)

    CAS  Google Scholar 

  50. K.A. Malik, J.H. Malik, A.A. Bhat, I. Assadullah, R. Tomar, Trap assisted visible light luminescent properties of hydrothermally grown Gd doped ZnO nanostructures. Vacuum (2021). https://doi.org/10.1016/j.vacuum.2020.109832

    Article  Google Scholar 

  51. K. Li, F. Lu, R. Fan, C. Ma, B. Xu, Effect of Er local surrounding on photoluminescence of Si Er co-doped ZnO film. J. Lumin. 200, 9–13 (2018)

    CAS  Google Scholar 

  52. A.S. Kadari, Y. Khane, A.N. Ech-Chergui, A. Popa, M. Guezzoul, D. Silipas, F. Bennabi, A. Zoukel, E. Akyildiz, K. Driss-Khodja, B. Amrani, Growth, properties and photocatalytic degradation of congo red using Gd:ZnO thin films under visible light. Inorg Chem Commun (2022). https://doi.org/10.1016/j.inoche.2022.109626

    Article  Google Scholar 

  53. D. Dash and D. Sahu, IOP Conf. Series: Materials Science and Engineering (2022), p.012037

  54. A.R. Babar, P.R. Deshamukh, R.J. Deokate, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis. J. Phys. D: Appl. Phys. 41, 1–6 (2008)

    Google Scholar 

  55. S. Kim, H. Yoon, D.Y. Kim, S.O. Kim, J.Y. Leem, Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol-gel dip-coating method. Opt. Mater. 35, 2418–2424 (2013)

    CAS  Google Scholar 

  56. NA Raship SNM Tawil K Ismail N Nayan M Tahan AS Bakri (2020) IEEE International Conference on Semiconductor Electronics (ICSE)

  57. V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, S. AlFaify, Novel rare earth Gd and Al co-doped ZnO thin films prepared by nebulizer spray method for optoelectronic applications. Superlattices Microstruct. 123, 311–322 (2018)

    CAS  Google Scholar 

  58. N.A. Raship, S.N.M. Tawil, K. Ismail, N. Nayan, M. Tahan, A.S. Bakri, Proc., IEEE Reg. Symp. Micro Nanoelectron (RSM) 2019, 38–41 (2019)

    Google Scholar 

  59. S.N.M. Tawil, C.A. Norhidayah, N. Sarip, S.A. Kamaruddin, A.R. Nurulfadzilah, A. Miskon, M.Z. Sahdan, Effect of rare-earth Gd incorporation on the characteristics of ZnO thin film. J. Nanosci. Nanotechnol. 15, 9212–9216 (2015)

    CAS  Google Scholar 

  60. X.Y. Li, H.-J. Li, Z.-J. Wang, Effect of substrate temperature on the structural and optical properties of ZnO and Al-doped ZnO thin films prepared by dc magnetron sputtering. Opt. Commun. 282, 247–252 (2009)

    CAS  Google Scholar 

  61. M.A. Rafea, N. Roushdy, Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J. Phys. D Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/1/015413

    Article  Google Scholar 

  62. X. Yan, D. Hu, H. Li, L. Li, X. Chong, Y. Wang, Nanostructure and optical properties of M doped ZnO (M¼Ni, Mn) thin films prepared by sol–gel process. Physica B 406, 3956–3962 (2011)

    CAS  Google Scholar 

  63. M.A.M. Khan, S. Kumar, M.N. Khan, M. Ahamed, A.S. Al Dwayyan, Microstructure and blueshift in optical band gap of nanocrystalline AlxZn1-xO thin films. J. Lumin. 155, 275–281 (2014)

    Google Scholar 

  64. Z. Gu, M. Lu, J. Wang, C. Du, C. Yuan, D. Wu, S. Zhang, Y. Zhu, S. Zhu, Y. Chen, Optical properties of (Mn, Co) co-doped ZnO films prepared by dual-radio frequency magnetron sputtering. Thin Solid Films 515, 2361–2365 (2006)

    CAS  Google Scholar 

  65. M.S. Aida, MSh. Abdel-wahab, A.H. Hammad, Impact of samarium on the structural and physical properties of sputtered ZnO thin films. Optik (2022). https://doi.org/10.1016/j.ijleo.2021.168322

    Article  Google Scholar 

  66. N.F. Ab Rasid, S.N.M. Tawil, N.C. Ani, M.Z. Sahdan, Effect of crystallite size on the optical and structural properties of gadolinium-doped zinc oxide. Adv Mat Res 1133, 414–418 (2016)

    Google Scholar 

  67. S. Karakaya, Spectroscopic ellipsometry studies of Al doped ZnO thin films deposited by ultrasonic spray pyrolysis technique. J. Nanoelectron. Optoelectron. 13, 677–686 (2018)

    CAS  Google Scholar 

  68. R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, Nanostructured GdxZn1-xO thin films by nebulizer spray pyrolysis technique: role of doping concentration on the structural and optical properties. Superlattices Microstruct. 59, 47–59 (2013)

    CAS  Google Scholar 

  69. J.R.R. Serrano, S.A. Iniesta, M.A. Osorno, M.E. Calixto, Growth of highly c-axis oriented ZnO thin films by spray pyrolysis for piezoelectric applications. Mater. Sci. Semicond. Process. (2022). https://doi.org/10.1016/j.mssp.2022.106585

    Article  Google Scholar 

  70. I Chaki A El hat A Mzerd A Belayachi M Regragui T Ajjammouri Z Sekkat M Abd-Lefdil (2015) 3rd international renewable and sustainable energy Conference (IRSEC) IEEE

  71. M. Anwar, Z.N. Kayani, A. Hassan, R. Sagheer, S. Riaz, S. Naseem, Analysis of the Nd dopant on optical, dielectric and biological properties of ZnO nanostructures. J. Mech. Behav. Biomed. Mater. (2022). https://doi.org/10.1016/j.jmbbm.2021.105016

    Article  Google Scholar 

  72. A. Sukumaran, N. Sivanantham, E. Vinoth, N. Gopalakrishnan, Ferromagnetism in Gd-doped ZnO thin films mediated by defects. Bull. Mater. Sci. (2021). https://doi.org/10.1007/s12034-021-02550-y

    Article  Google Scholar 

  73. D.K. Sharma, K.K. Sharma, V. Kumar, A. Sharma, Effect of Ce doping on the structural, optical and magnetic properties of ZnO nanoparticles. J. Mater. Sci: Mater. Electron 27, 10330–10335 (2016)

    CAS  Google Scholar 

  74. N. Aggarwal, K. Kaur, A. Vasishth, N.K. Verma, Structural, optical and magnetic properties of Gadolinium-doped ZnO nanoparticles. J. Mater. Sci: Mater. Electron. 27, 13006–13011 (2016)

    CAS  Google Scholar 

  75. N. Siregar, J.H. Motlan, M. Panggabean, J. Sirait, N.S. Rajagukguk, Gultom and F. K. Sabir, Fabrication of Dye-sensitized solar cells (DSSC) using mg-doped ZnO as photoanode and extract of rose myrtle (Rhodomyrtustomentosa) as natural dye. Int. J. Photoen. (2021). https://doi.org/10.1155/2021/4033692

    Article  Google Scholar 

  76. S. Kurtaran, Al doped ZnO thin films obtained by spray pyrolysis technique: influence of different annealing time. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.110908

    Article  Google Scholar 

  77. S. Aydemir, S. Karakaya, Effects of withdrawal speed on the structural and optical properties of sol–gel derived ZnO thin films. J. Magn. Magn. Mater. 373, 33–39 (2015)

    CAS  Google Scholar 

  78. J.Z. Marinho, L.F. de Paula, E. Longo, A.O.T. Patrocinio, R.C. Lima, Efect of Gd3+ doping on structural and photocatalytic properties of ZnO obtained by facile microwave hydrothermal method. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0359-x

    Article  Google Scholar 

  79. T.R. Acharya, D.K. Chaudhary, S. Gautam, A.K. Singh, R. Shrestha, B.C. Adhikari, P. Lamichhane, B. Paudyal, N.K. Kaushik, E.H. Choi, Influence of nanoparticle size on the characterization of ZnO thin films for formaldehyde sensing at room temperature. Sens. Actuator A Phys. (2023). https://doi.org/10.1016/j.sna.2023.114175

    Article  Google Scholar 

  80. C.E.C. Güereca, M.R.A. Cruz, E.L. Hipόlito, L.M.T. Martínez, Transparent ZnO thin films deposited by dip-coating technique: analyses of their hydrophobic properties. Surf Interfaces (2023). https://doi.org/10.1016/j.surfin.2023.102705

    Article  Google Scholar 

  81. S.P. Dalawai, M.A.S. Aly, S.S. Latthe, R. Xing, R.S. Sutar, S. Nagappan, C.S. Ha, K.K. Sadasivuni, S. Liu, Recent advances in durability of superhydrophobic self-cleaning technology: a critical review. Prog Org Coat (2020). https://doi.org/10.1016/j.porgcoat.2019.105381

    Article  Google Scholar 

  82. S. Das, S. Das, A. Roychowdhury, D. Das, S. Sutradhar, Effect of Gd doping concentration and sintering temperature on structural, optical, dielectric and magnetic properties of hydrothermally synthesized ZnO nanostructure. J. Alloys Compd. 708, 231–246 (2017)

    CAS  Google Scholar 

  83. H. Shen, X. Shi, Z. Wang, Z. Hou, C. Xu, L. Duan, X. Zhao, H. Wu, Defects control and origins of blue and green emissions in sol–gel ZnO thin films. Vacuum (2022). https://doi.org/10.1016/j.vacuum.2022.111201

    Article  Google Scholar 

  84. H.B. Zeng, G.T. Duan, Y. Li, S.K. Yang, X.X. Xu, W.P. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20, 561–572 (2010)

    CAS  Google Scholar 

  85. D. Mendil, F. Challali, T. Touam, A. Chelouche, A.H. Souici, S. Ouhenia, D. Djouadi, Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering. J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2019.116631

    Article  Google Scholar 

  86. S. Kumar, R. Thangavel, Gd doping effect on structural, electrical and magnetic properties of ZnO thin films synthesized by Sol–Gel spin coating technique. Electron. Mater. Lett. 13, 129–135 (2017)

    CAS  Google Scholar 

  87. F. Bensouici, T. Souier, A. Iratni, A. Dakhel, R. Tala-Ighil, M. Bououdina, Effect of acid nature in the starting solution on surface and photocatalytic properties of TiO2 thin films. Surf. Coat. Technol. 251, 170–176 (2014)

    CAS  Google Scholar 

  88. S. Karakaya, Current Research, in Science and mathematics. ed. by Prof. Dr. Hasan Akgül, (Gece Publishing, Ankara, 2022), pp.81–95

    Google Scholar 

  89. R. Baghdad, N. Lemee, G. Lamura, A. Zeinert, N. Hadj-Zoubir, M. Bousmaha, M.A. Bezzerrouk, H. Bouyanfif, B. Allouche, K. Zellama, Structural and magnetic properties of Co-doped ZnO thin films grown by ultrasonic spray pyrolysis method. Superlattices Microstruct. 104, 553–569 (2017)

    CAS  Google Scholar 

  90. K. Kasirajan, L. Bruno Chandrasekar, S. Maheswari, M. Karunakaran, P. Shunmuga Sundaram, A comparative study of different rare earth (Gd, Nd, and Sm) metals doped ZnO thin films and its room temperature ammonia gas sensor activity: Synthesis, characterization, and investigation on the impact of dopant. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111554

    Article  Google Scholar 

  91. T. Srinivasulu, K. Saritha, K.T. Ramakrishna Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. MoEM. 3, 76–85 (2017)

    Google Scholar 

  92. G.S. Thool, M. Arunakumari, A.K. Singh, S.P. Singh, Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures:a morphological evaluation. Bull. Mater. Sci. 38, 1519–1525 (2015)

    CAS  Google Scholar 

  93. A.A.-G. Farrag, M.R. Balboul, Nano ZnO thin films synthesis by sol–gel spin coating method as a transparent layer for solar cell applications. J Sol–Gel Sci Technol. 82, 269–279 (2017)

    CAS  Google Scholar 

  94. M.A.M. Ahmed, B.S. Mwankemwa, E. Carleschi, B.P. Doyle, W.E. Meyer, J.M. Nel, Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition. Mater. Sci. Semicond. Process. 79, 53–60 (2018)

    CAS  Google Scholar 

  95. R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing. J Sci-Adv Mater Dev. 2, 51–58 (2017)

    Google Scholar 

  96. A. Khataee, R.D.C. Soltani, A. Karimi, J.-S. Woo, Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrason Sonochem. 23, 218–230 (2015)

    Google Scholar 

  97. X.Y. Yi, C.Y. Ma, F. Yuan, N. Wang, F.W. Qin, B.C. Hu, Q.Y. Zhang, Structural, morphological, photoluminescence and photocatalytic properties of Gd-doped ZnO films. Thin Solid Films 636, 339–345 (2017)

    CAS  Google Scholar 

  98. S. Sa-nguanprang, A. Phuruangrat, T. Thongtem, S. Thongtem, Visible-light-driven photocatalysis of Gd-doped ZnO nanoparticles prepared by tartaric acid precipitation method. Russ. J. Inorg. Chem. 64, 1600–1608 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research Projects Coordination Unit of Eskisehir Osmangazi University within the scope of the project number FBA-2022-2578. Authors are thankful to Assoc. Prof. Dr. Zerrin Günkaya and Asst. Mahmut Öztürk for their help with the water contact angle measurements of the samples.

Funding

This study was supported by the Scientific Research Projects Coordination Unit of Eskisehir Osmangazi University within the scope of the Project Number FBA-2022-2578.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions to the study.

Corresponding author

Correspondence to Seniye Karakaya.

Ethics declarations

Conflict of interest

We declare that we do not have any financial and personal conflict of interest with other persons or organizations that could inappropriately influence (bias) our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakaya, S., Kaba, L. Enhancing the photocatalytic performance of ZnO:Gd films produced by spray pyrolysis using methylene blue pollutant. J Mater Sci: Mater Electron 34, 1295 (2023). https://doi.org/10.1007/s10854-023-10712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10712-3

Navigation