Skip to main content
Log in

Investigation on the structural, magnetic, microwave absorption properties, and shielding effectiveness in the Ku frequency band of pristine and Dy3+ doped Stannous ferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and 5% dysprosium (Dy)-doped stannous ferrite nanoparticles have been synthesized by sol–gel method. X-Ray diffraction patterns confirm successful doping of Dy3+ ions in stannous ferrite. The different structural parameters, viz., oxygen positional parameter, bond lengths, bond angles, etc., are calculated from the cationic distribution in the tetrahedral and octahedral sites. Magnetic studies indicate a considerable enhancement in magnetization and blocking temperature due to the inclusion of Dy3+ ions in the octahedral sites of stannous ferrite. Room temperature M–H loop data suggest soft ferromagnetic nature enhances due to incorporation of the Dy3+ ion. The maximum shielding effectiveness is found to be 19.1 dB at 14.76 GHz for undoped stannous ferrite (SF1) and 18.01 dB at 14.06 GHz for Dy3+-doped stannous ferrite (SF2). Over a wide range in the Ku frequency band, the values of reflection loss for both the samples are less than − 10 dB/m, suggesting that they are good microwave absorbers. The good EMI shielding, along with fair magnetic properties and microwave absorption properties, will be fruitful in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. V. Moye, K.S. Rane, V.N. Kamat Dalal, Mater. Sci.: Mater. Electron. 1, 212–218 (1990). https://doi.org/10.1007/BF00696080

    Article  CAS  Google Scholar 

  2. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrog. Energy 47(31), 14319–14330 (2022)

    Article  CAS  Google Scholar 

  3. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, J. Am. Ceram. Soc. 104(7), 2952–2965 (2021)

    Article  CAS  Google Scholar 

  4. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  5. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, RSC Adv. 11(19), 11500–11512 (2021)

    Article  CAS  Google Scholar 

  6. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  7. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydroj. Energy. 44(43), 24005–24016 (2019)

    Article  CAS  Google Scholar 

  8. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder Technol. 28(4), 1258–1262 (2017)

    Article  CAS  Google Scholar 

  9. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci. Mater. Electron 27, 1244–1253 (2016)

    Article  CAS  Google Scholar 

  10. S.R. Yousefi, D. Ghanbari, N.M. Salavati, J. Nanostruct. 6(1), 77–82 (2016)

    Google Scholar 

  11. F. Liu, T. Li, H. Zheng, Phys. Lett. A 323(3–4), 305–309 (2004). https://doi.org/10.1016/j.physleta.2004.01.077

    Article  CAS  Google Scholar 

  12. P.A. Vinosha, J.V.A. Vinsla, J. Madhavan, S. Devanesan, M.S. Alsalhi, M. Nicoletti, B. Xavier, Environ. Res. 203, 111913 (2021). https://doi.org/10.1016/j.envres.2021.111913

    Article  CAS  Google Scholar 

  13. Z.A. Anas Houbi, Y.A. Aldashevich, Z.B. Telmanovna, M. Saule, K. Kubanyc, J. Magn. Magn. Mater. 529, 167839–167878 (2021). https://doi.org/10.1016/j.jmmm.2021.167839

    Article  CAS  Google Scholar 

  14. A.A.H. El-Bassuony, W.M. Gamal, H.K. Abdelsalam, Eur. Phys. J. Spec. Top. (2023). https://doi.org/10.1140/epjs/s11734-022-00759-4

    Article  Google Scholar 

  15. V. Manikandan, A. Vanitha, E. Ranjith Kumar, J. Chandrasekaran, J. Magn. Magn. Mater. 432, 477–483 (2017). https://doi.org/10.1016/j.jmmm.2017.02.030

    Article  CAS  Google Scholar 

  16. H. Yao, X. Ning, H. Zhao, M. Ismail, ACS Omega 6(9), 6305–6311 (2021). https://doi.org/10.1021/acsomega.0c06097

    Article  CAS  Google Scholar 

  17. M. Hashim, S.E. Alimuddin, S. Shirsath, R. Kumar, A.S. Kumar, R.K.K. Roy, J. Alloy. Compd. 549, 348–357 (2013). https://doi.org/10.1016/j.jallcom.2012.08.039

    Article  CAS  Google Scholar 

  18. P. Ayyub, V.R. Palkar, S. Chattopadhyay, M. Multani, Phys. Rev. B. 51, 6135 (1995). https://doi.org/10.1103/PhysRevB.51.6135

    Article  CAS  Google Scholar 

  19. G.B. Praveen, A.D.P. Rao, Chem. Sci. Trans 8(2), 146–159 (2019). https://doi.org/10.7598/cst2019.1564

    Article  CAS  Google Scholar 

  20. S.E. Shirsath, R.H. Kadam, S.M. Patange, M.L. Mane, A. Ghasemi, A. Morisako, Appl. Phys. Lett. 100, 042407 (2012). https://doi.org/10.1063/1.3679688

    Article  CAS  Google Scholar 

  21. M. Augustin, T. Balu, Int. J. Nanosci. 16(3), 1–7 (2017). https://doi.org/10.1142/S0219581×16500356

    Article  Google Scholar 

  22. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Phys. Scr. 84, 045702 (2011). https://doi.org/10.1088/0031-8949/84/04/045702

    Article  CAS  Google Scholar 

  23. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Malib, S.H. Pawar, RSC Adv. 5, 2338–2345 (2015). https://doi.org/10.1039/C4RA08342C

    Article  CAS  Google Scholar 

  24. S. Chattopadhyay, A. Bandyopadhyay, M. Nath, Ceramic science and engineering (Elsevier, Amsterdam, 2022)

    Google Scholar 

  25. A. Chakrabarti, J. Banerjee, S. Chakravarty, S. Samanta, M. Nath, S. Chattopadhyay, S. Sarkar, S. Mitra Banerjee, S. Chowdhury, S.K. Dash, A. Bandyopadhyay, J. Magn. Magn. Mater. 563, 169957 (2022). https://doi.org/10.1016/j.jmmm.2022.169957

    Article  CAS  Google Scholar 

  26. V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Solid State Sci. 13(3), 539–547 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.12.023

    Article  CAS  Google Scholar 

  27. L. Shiwen, P. Jiatong, G. Feng, Z. Deqian, F. Qin, H. Chunling, G. Dodbiba, Y. Wei, T. Fujita, J. Mater. Sci.: Mater. Electron. 32, 13511–13526 (2021). https://doi.org/10.1007/s10854-021-05928-0

    Article  CAS  Google Scholar 

  28. J. Xu, D. Xie, C. Teng, X. Zhang, C. Zhang, Y. Sun, T. Ren, M. Zeng, X. Gao, Y. Zhao, J. Appl. Phys. 117, 224101 (2015). https://doi.org/10.1063/1.4922167

    Article  CAS  Google Scholar 

  29. E.C. Stoner, E.P. Wohlfarth, Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 240(826), 599–642 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  Google Scholar 

  30. K.V. Chandekar, K. Mohan Kant, Adv. Mater. Lett. 8(4), 435–443 (2017). https://doi.org/10.5185/amlett.2017.6900

    Article  CAS  Google Scholar 

  31. D. Fiorani, J.L. Dormann, R. Cherkaoui, E. Tronc, F.D. Lucari, F. Orazio, L. Spinu, M. Nogues, A. Garcia, A.M. Testa, J. Magn. Magn. Mater. 196–197, 143–147 (1999). https://doi.org/10.1016/S0304-8853(98)00694-5

    Article  Google Scholar 

  32. A.P. Safronov, I.V. Beketov, S.V. Komogortsev, G.V. Kurlyandskaya, A.I. Medvedev, D.V. Leiman, A. Larrañaga, S.M. Bhagat, AIP Adv. 3, 052135 (2013). https://doi.org/10.1063/1.4808368

    Article  CAS  Google Scholar 

  33. H. Elmoussaoui, M. Hamedoun, O. Mounkachi, A. Benyoussef, R. Masrour, E.K. Hlil, J. Supercond. Nov. Magn. 25, 1995–2002 (2012). https://doi.org/10.1007/s10948-012-1547-8

    Article  CAS  Google Scholar 

  34. J.M.D. Coey, Phys. Rev. Lett. 27(17), 1140–1142 (1971). https://doi.org/10.1103/physrevlett.27.1140

    Article  CAS  Google Scholar 

  35. S. Urcia-Romero, O. Perales-Pérez, G. Gutiérrez, J. Appl. Phys. 107, 09A508 (2010). https://doi.org/10.1063/1.3338847

    Article  CAS  Google Scholar 

  36. I.M. Obaidat, C. Nayek, K. Manna, Appl. Sci. 7, 1269 (2017). https://doi.org/10.3390/app7121269

    Article  CAS  Google Scholar 

  37. V. Blanco-Gutierrez, R. Saez-Puche, M.J. Torralvo-Fernandez, J. Mater. Chem. 22, 2992 (2012). https://doi.org/10.1039/C1JM14856G

    Article  CAS  Google Scholar 

  38. S. Kuma, A. Ohlan, P. Kumar, V. Verma, J. Supercond. Nov. Magn. 33, 1187–1198 (2020). https://doi.org/10.1007/s10948-019-05343-x

    Article  CAS  Google Scholar 

  39. P. Saha, S. Das, S. Sutradhar, J. Appl. Phys. 124, 045303 (2018). https://doi.org/10.1063/1.5038134

    Article  CAS  Google Scholar 

  40. T. Kaur, S. Kumar, S.B. Narang, A.K. Srivastava, J. Magn. Magn. Mater. 420, 336–342 (2016). https://doi.org/10.1016/j.jmmm.2016.07.058

    Article  CAS  Google Scholar 

  41. Z. Du, Y. Zhang, X. Chen, X. Que, P. Liu, M. Zhai, H.-L. Ma, X. Zhang, J. Mater. Sci. Mater. Electron. 31(19), 16281–16289 (2020). https://doi.org/10.1007/s10854-020-04176-y

    Article  CAS  Google Scholar 

  42. M. Toru, S. Satoshi, K. Toshio, T. Nobuki, I. Koichiro, J. Magn. Magn. Mater. 281, 195–205 (2004). https://doi.org/10.1016/j.jmmm.2004.04.105

    Article  CAS  Google Scholar 

  43. M. Green, Y. Li, Z. Peng, X. Chen, J. Magn. Magn. Mater. 497, 165974 (2020). https://doi.org/10.1016/j.jmmm.2019.165974

    Article  CAS  Google Scholar 

  44. S. Gao, Q. An, Z. Xiao, S. Zhai, D. Yang, ACS Appl. Nano Mater. 1(10), 5895–5906 (2018). https://doi.org/10.1021/acsanm.8b01556

    Article  CAS  Google Scholar 

  45. P. Kaur, S.B. Narang, S. Bahel, Mater. Sci. Eng. B. 268, 115141 (2021). https://doi.org/10.1016/j.mseb.2021.115141

    Article  CAS  Google Scholar 

  46. X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Appl. Phys. Lett. 95, 163108 (2009). https://doi.org/10.1063/1.3250170

    Article  CAS  Google Scholar 

  47. L.J. Deng, M.G. Han, Appl. Phys. Lett. 91, 023119 (2007). https://doi.org/10.1063/1.2755875

    Article  CAS  Google Scholar 

  48. Z. Zhu, X. Sun, G. Li, H. Xue, H. Guo, X. Fan, X. Pan, J. He, J. Magn. Magn. Mater. 377, 95–103 (2015). https://doi.org/10.1016/j.jmmm.2014.10.079

    Article  CAS  Google Scholar 

  49. J.L. Liu, P. Zhang, X.K. Zhang, Q. Xie, D.J. Pan, J. Zhang, M. Zhang, Rare Met. 36, 704–710 (2017). https://doi.org/10.1007/s12598-015-0671-6

    Article  CAS  Google Scholar 

  50. J. Luo, D. Gao, J. Magn. Magn. Mater. 368, 82–86 (2014). https://doi.org/10.1016/j.jmmm.2014.05.009

    Article  CAS  Google Scholar 

  51. J. Wang, J. Wang, B. Zhang, Y. Sun, W. Chen, T. Wang, J. Magn. Magn. Mater. 401, 209–216 (2015). https://doi.org/10.1016/j.jmmm.2015.10.001

    Article  CAS  Google Scholar 

  52. Y. Yunasfi, M. Mashadi, D.S. Winatapura, J. Setiawan, Y. Taryana, Y.E. Gunanto, W.A. Adi, Phys. Status Solidi A 220, 2200718 (2023). https://doi.org/10.1002/pssa.202200718.D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge UGC-DAE CSR, Kalpakkam node for providing facilities for SQUID measurement for our magnetic studies.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AB, MN: conceptualization and writing-review & editing. AC: methodology, formal analysis & writing–original draft. SC, DB: data curation. SC, GM: validation. SS and SMB: supervision.

Corresponding author

Correspondence to A. Bandyopadhyay.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose and all authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, A., Mitra Banerjee, S., Basandrai, D. et al. Investigation on the structural, magnetic, microwave absorption properties, and shielding effectiveness in the Ku frequency band of pristine and Dy3+ doped Stannous ferrite nanoparticles. J Mater Sci: Mater Electron 34, 1325 (2023). https://doi.org/10.1007/s10854-023-10707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10707-0

Navigation