Skip to main content
Log in

Preparation of woven copper tube and its application in electromagnetic shielding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electromagnetic shielding has becoming a priority of researches in recent years due to electromagnetic wave pollution with the rise of electromagnetic wave. However, the present silver printed composite material is costly, which would give rise to the waste of precious metal resources. A simple method involving electroless plating, which constructs the textured electromagnetic shielding material, has been proposed and demonstrated in this paper. The inner connection between the copper tube structure and the electromagnetic shielding effect is also studied. Results indicate that the metal particle/ligand structure on the woven fabric surface can be geared up for catalyzing the deposition of copper particles, which can self-assemble to form copper tubes. The copper tube has a face-centered cubic structure with a content of 45%, the electromagnetic shielding performance of the textured copper tube is 26 dB, in which the absorbed power coefficient of this structure is 0.73, the transmission is 0.003, and this material can pass 1000 times of bending tests at different angles. Therefore, electromagnetic shielding materials can be manufactured by electroless plating and applied to the production of protective clothing for pregnant women and shielding wall coverings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y.H. Zhan, Y. Cheng, N. Yan, Y.C. Li, Y.Y. Meng, C.M. Zhang, Z.M. Chen, H.S. Xia, Chem. Eng. J. 417, 129339 (2021). https://doi.org/10.1016/j.cej.2021.129339

    Article  CAS  Google Scholar 

  2. Y.F. Wang, Y. Hong, G.Y. Zhou, W. He, Z.P. Gao, S.X. Wang, C. Wang, Y.M. Chen, Z.S. Weng, Y.Q. Wang, ACS Appl. Mater. Interfaces 11, 44811–44819 (2019). https://doi.org/10.1021/acsami.9b11690

    Article  CAS  Google Scholar 

  3. J.J. Huang, C.M. Gui, H.D. Ma, P. Li, W.P. Wu, Z.M. Chen, Compos. Sci. Technol. 202, 108547 (2021). https://doi.org/10.1016/j.compscitech.2020.108547

    Article  CAS  Google Scholar 

  4. Y.X. Lu, L.L. Xue, Compos. Sci. Technol. 72, 828–834 (2012). https://doi.org/10.1016/j.compscitech.2012.02.012

    Article  CAS  Google Scholar 

  5. J.J. Huang, D. Sun, G. Li, X.K. Wang, H.D. Ma, W.Q. Zhang, Z.M. Chen, H.L. Li, C.M. Gui, Compos. Sci. Technol. 228, 109636 (2022). https://doi.org/10.1016/j.compscitech.2022.109636

    Article  CAS  Google Scholar 

  6. J.W. Li, X.N. Zhang, Y.Q. Ding, S.Y. Zhao, Z.L. Ma, H.M. Zhang, X.H. He, Chem. Eng. J. 427, 131937 (2022). https://doi.org/10.1016/j.cej.2021.131937

    Article  CAS  Google Scholar 

  7. L. Wang, B. Wen, X.Y. Bai, C. Liu, H.B. Yang, ACS Appl. Nano Mater. 2, 7827–7838 (2019). https://doi.org/10.1021/acsanm.9b01842

    Article  CAS  Google Scholar 

  8. Y.Z. Wan, P.X. Xiong, J.Z. Liu, F.F. Feng, X.W. Xun, F.M. Gama, Q.C. Zhang, F.L. Yao, Z.W. Yang, H.L. Luo, Y.H. Xu, ACS Nano 15, 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666

    Article  CAS  Google Scholar 

  9. M.A. Kazakova, N.V. Semikolenova, E.Y. Korovin, S.I. Moseenkov, A.S. Andreev, A.S. Kachalov, V.L. Kuznetsov, V.I. Suslyaev, M.A. Matsko, V.A. Zakharov, Russ. J. Appl. Chem. 91, 127135 (2018). https://doi.org/10.1134/S1070427218010202

    Article  Google Scholar 

  10. A.S. Andreev, M.A. Kazakova, A.V. Ishchenko, A.G. Selyutin, O.B. Lapina, V.L. Kuznetsov, Carbon 114, 39–49 (2017). https://doi.org/10.1016/j.carbon.2016.11.070

    Article  CAS  Google Scholar 

  11. A. Ansari, M.J. Akhtar, Mater. Res. Express 4, 16304 (2017). https://doi.org/10.1088/2053-1591/aa570c

    Article  CAS  Google Scholar 

  12. W.J. Tang, L.S. Lu, D. Xing, H.Z.Z. Fang, Q. Liu, K.S. Teh, Compos. Part B-Eng. 152, 8–16 (2018). https://doi.org/10.1016/j.compositesb.2018.06.026

    Article  CAS  Google Scholar 

  13. B.S. Kwak, G.W. Jeong, W.H. Choi, Y.W. Nam, Compos. Struct. 256, 113148 (2021). https://doi.org/10.1016/j.compstruct.2020.113148

    Article  CAS  Google Scholar 

  14. H. Zhao, J. Yun, Y.L. Zhang, K.P. Ruan, Y.S. Huang, Y.P. Zheng, L.X. Chen, J.W. Gu, ACS Appl. Mater. Interfaces 14, 3233–3243 (2022). https://doi.org/10.1021/acsami.1c22950

    Article  CAS  Google Scholar 

  15. X.K. Zhao, J.J. Wan, D. Sun, G. Li, H.D. Ma, H.L. Li, Z.M. Chen, X. Liu, J.J. Huang, C.M. Gui, Langmuir 39, 3558–4356 (2023). https://doi.org/10.1021/acs.langmuir.2c02830

    Article  CAS  Google Scholar 

  16. B. Joseph, S.V.K.C. Sabu, N. Kalarikkal, S. Thomas, J. Bioresour. Bioprod. 5, 223–237 (2020). https://doi.org/10.1016/j.jobab.2020.10.001

    Article  CAS  Google Scholar 

  17. Y.M. Chen, L.J. Zhou, L. Chen, G.G. Duan, C.T. Mei, C.B. Huang, J.Q. Han, S.H. Jiang, Cellulose 26, 6653–6667 (2019). https://doi.org/10.1007/s10570-019-02557-z

    Article  CAS  Google Scholar 

  18. R. Yang, Q.H. Cao, S. Hong, J.Y. Peng, J.T. Du, Z. Xu, Y. Zhang, Review of oil-water separation materials based on cellulose. J. For. Eng. 5, 13–20 (2020). https://doi.org/10.13360/j.issn.2096-1359.201908015

    Article  CAS  Google Scholar 

  19. J.F. Gao, J.C. Luo, L. Wang, X.W. Huang, H. Wang, X. Song, M.J. Hu, L.C. Tang, H.G. Xue, Chem. Eng. J. 364, 493–502 (2019). https://doi.org/10.1016/j.cej.2019.01.190

    Article  CAS  Google Scholar 

  20. S.V. Dravid, S.D. Bhosale, S. Datar, J. Electron. Mater. 49, 1630–1637 (2020). https://doi.org/10.1007/s11664-019-07535-6

    Article  CAS  Google Scholar 

  21. Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin, Y.G. Hu, T. Zhao, X.L. Zeng, C.H. Li, S.H. Yu, P.L. Zhu, R. Sun, C.P. Wong, ACS Nano 14, 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971

    Article  CAS  Google Scholar 

  22. Y.M. Chen, L. Zhang, C.T. Mei, Y. Li, G.G. Duan, S. Agarwal, G. Andreas, C.X. Ma, S.H. Jiang, ACS Appl. Mater. Interfaces 12, 35513–35522 (2020). https://doi.org/10.1021/acsami.0c10645

    Article  CAS  Google Scholar 

  23. Z.H. Zeng, T.T. Wu, D.X. Han, G. Sigueira, G. Nystrom, ACS Nano 14, 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452

    Article  CAS  Google Scholar 

  24. Q.Z. Liu, X.W. He, C. Yi, D.M. Sun, J.H. Chen, D. Wang, K. Liu, M.F. Li, Compos. B Eng. 182, 107614 (2020). https://doi.org/10.1016/j.compositesb.2019.107614

    Article  CAS  Google Scholar 

  25. Y. Li, B. Shen, X.L. Pei, Y.G. Zhang, D. Yi, W.T. Zhai, L.H. Zhang, X.C. Wei, W.G. Zheng, Carbon 100, 375–385 (2016). https://doi.org/10.1016/j.carbon.2016.01.030

    Article  CAS  Google Scholar 

  26. Q. Yu, Y. Qin, M.Y. Han, F. Pan, L. Han, X.Z. Yin, Z.M. Chen, L.X. Wang, H. Wang, Int. J. Biol. Macromol. 161, 122–131 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.027

    Article  CAS  Google Scholar 

  27. B. Shen, W.T. Zhai, M.M. Tao, J.Q. Ling, W.G. Zheng, ACS Appl. Mater. Interfaces 5, 11383–11391 (2013). https://doi.org/10.1021/am4036527

    Article  CAS  Google Scholar 

  28. J.Y. Liang, Y.Z. Gu, M. Bai, S.K. Wang, M. Li, Z.G. Zhang, Compos. Appl. Sci. Manuf. 121, 289–298 (2019). https://doi.org/10.1016/j.compositesa.2019.03.037

    Article  CAS  Google Scholar 

  29. M. Arjmand, K. Chizari, B. Krause, P. Potschke, U. Sundararaj, Carbon 98, 358–372 (2016). https://doi.org/10.1016/j.carbon.2015.11.024

    Article  CAS  Google Scholar 

  30. H. Shen, Y.S. Li, W. Yao, S.W. Yang, L. Yang, F. Pan, Z.M. Chen, X.Z. Yin, Compos. B Eng. 222, 109042 (2021). https://doi.org/10.1016/j.compositesb.2021.109042

    Article  CAS  Google Scholar 

  31. Y.H. Zhan, J. Wang, K.Y. Zhang, Y.C. Li, N. Yan, W.K. Wei, F.B. Peng, H.S. Xia, Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085

    Article  CAS  Google Scholar 

  32. F. Sharif, M. Arjmand, A.A. Moud, U. Sundararaj, E.P.L. Roberts, ACS Appl. Mater. Interfaces 9, 14171–14179 (2017). https://doi.org/10.1021/acsami.6b13986

    Article  CAS  Google Scholar 

  33. R.X. Zhang, C.M. Gui, J.J. Huang, G.S. Yang, J. Taiwan Inst. Chem. Eng. 125, 424–433 (2021). https://doi.org/10.1016/j.jtice.2021.06.034

    Article  CAS  Google Scholar 

  34. Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou, Z. Zhang, Adv. Funct. Mater. 26, 303–310 (2016). https://doi.org/10.1002/adfm.201503579

    Article  CAS  Google Scholar 

  35. Y. Wang, W. Wang, X.D. Ding, D. Yu, Chem. Eng. J. 380, 122553 (2020). https://doi.org/10.1016/j.cej.2019.122553

    Article  CAS  Google Scholar 

  36. R.S. Li, S. Wang, P.W. Bai, B.B. Fan, B. Zhao, R. Zhang, Mater. Adv. 2, 718–727 (2021). https://doi.org/10.1039/D0MA00751J

    Article  CAS  Google Scholar 

  37. W.L. Song, M.S. Cao, M.M. Lu, S. Bi, L.Z. Fan, Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043

    Article  CAS  Google Scholar 

  38. Y.K. Kwon, P. Kim, Phys. Rev. Lett. 84, 4613–4616 (2000). https://doi.org/10.1007/0-387-25100-6_8

    Article  Google Scholar 

  39. J.N. Gavgani, H. Adelnia, D. Zaarei, M.M. Gudarzi, RSC Adv. 6, 27517–27527 (2016). https://doi.org/10.1039/C5RA25374H

    Article  CAS  Google Scholar 

  40. Z. Zeng, F. Jiang, Y. Yue, D. Han, J. Wang, Adv. Mater. 32, 1908496 (2020). https://doi.org/10.1002/adma.201908496

    Article  CAS  Google Scholar 

  41. M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the financial supports by the General project of Guangxi Natural Science Foundation (No: 2022GXNSFAA035607), Youth Fund of Anhui Province (No: 2108085QE186, 2208085QE137 and 2208085QE122).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HJT and JJW. The first draft of the manuscript was written by HJT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. JJH Conceptualization, data curation, writing-review and editing, validation, supervision.

Corresponding author

Correspondence to Junjun Huang.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving animals performed by any of the authors. Also, this article does not contain any studies involving human participants performed by any of the authors.

Research involving human and animal rights

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, H., Wan, J., Wang, S. et al. Preparation of woven copper tube and its application in electromagnetic shielding. J Mater Sci: Mater Electron 34, 1299 (2023). https://doi.org/10.1007/s10854-023-10705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10705-2

Navigation