Skip to main content

Advertisement

Log in

Effect of HNT@PANI hybrid nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible PVDF-based piezoelectric nanogenerators (PENGs) are promising mechanical energy harvesters for powering wearable devices and portable electronics. In this work, a new hybrid nanocomposite was prepared by coating polyaniline on the surface of halloysite nanotube (HNT@PANI) and PENGs were fabricated by using electrospun nanocomposite fiber mats comprising HNT@PANI and poly(vinylidene fluoride) (PVDF). The rough surface of PANI outer layer and its electronegative properties favors a large interface and a strong interfacial interaction with PVDF matrix, which efficiently improves the β-phase crystal content and the crystallinity of PVDF simultaneously, resulting in an enhanced output performance in the fibrous nanocomposite PENGs. When the nanocomposite fiber mats are composed of 1 wt% HNT@PANI nanoparticles, the open-circuit voltage of the PENG is up to 30 V, which is six times higher than that of pure PVDF, and it can also light up 17 red LEDs. Furthermore, the open-circuit voltage was found unchanged after being subjected to continuous tapping for 5 weeks in the durability test. In addition, the PENG can charge a capacitor to 4.4 V within 60 s. This flexible self-powered PENG with good durability and high outputs has the potential to be used as a self-charging power source and applied in the field of wearable flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. M. Abbasipour, R. Khajavi, A.A. Yousefi, M.E. Yazdanshenas, F. Razaghian, A. Akbarzadeh, Improving piezoelectric and pyroelectric properties of electrospun PVDF nanofibers using nanofillers for energy harvesting application. Polym. Adv. Technol. 30(2), 279–291 (2019)

    CAS  Google Scholar 

  2. Q. Zhao, L. Yang, K. Chen, Y. Ma, Q. Peng, H. Ji, J. Qiu, Flexible textured MnO2 nanorods/PVDF hybrid films with superior piezoelectric performance for energy harvesting application. Compos. Sci. Technol. 199, 108330 (2020)

    CAS  Google Scholar 

  3. H. Li, W. Lian, T. Cheng, W. Zhang, B. Lu, K. Tan, C. Liu, C. Shen, Highly tunable piezoelectricity of flexible nanogenerators based on 3D porously architectured membranes for versatile energy harvesting and self-powered multistimulus sensing. ACS Sustain. Chem. Eng. 9(50), 17128–17141 (2021)

    CAS  Google Scholar 

  4. I. Choudhry, H.R. Khalid, H.-K. Lee, Flexible piezoelectric transducers for energy harvesting and sensing from human kinematics. ACS Appl. Electron. Mater. 2(10), 3346–3357 (2020)

    CAS  Google Scholar 

  5. J. Li, G. Zhou, Y. Hong, W. He, S. Wang, Y. Chen, C. Wang, Y. Tang, Y. Sun, Y. Zhu, Highly sensitive, flexible and wearable piezoelectric motion sensor based on PT promoted β-phase PVDF. Sens. Actuator A phys. 337, 113415 (2022)

    CAS  Google Scholar 

  6. H. Li, H. Song, M. Long, G. Saeed, S. Lim, Mortise-tenon joint structured hydrophobic surface-functionalized barium titanate/polyvinylidene fluoride nanocomposites for printed self-powered wearable sensors. Nanoscale 13(4), 2542–2555 (2021)

    CAS  Google Scholar 

  7. N. Ghaedi Dehaghi, M. Kokabi, Polyvinylidene fluoride/barium titanate nanocomposite aligned hollow electrospun fibers as an actuator. Mater. Res. Bull. 158, 112052 (2023)

    CAS  Google Scholar 

  8. S. Sharafkhani, M. Kokabi, High performance flexible actuator: PVDF nanofibers incorporated with axially aligned carbon nanotubes. Compos. Part B Eng. 222, 109060 (2021)

    CAS  Google Scholar 

  9. L. Wu, Z. Jin, Y. Liu, H. Ning, X. Liu, N. Alamusi, Hu, Recent advances in the preparation of PVDF-based piezoelectric materials. Nanotechnol. Rev. 11(1), 1386–1407 (2022)

    CAS  Google Scholar 

  10. P.K. Szewczyk, A. Gradys, S.K. Kim, L. Persano, M. Marzec, A. Kryshtal, T. Busolo, A. Toncelli, D. Pisignano, A. Bernasik, S. Kar-Narayan, P. Sajkiewicz, U. Stachewicz, Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting. ACS Appl. Mater. Interfaces 12(11), 13575–13583 (2020)

    CAS  Google Scholar 

  11. H. Gao, P.T. Minh, H. Wang, S. Minko, J. Locklin, T. Nguyen, S. Sharma, High-performance flexible yarn for wearable piezoelectric nanogenerators. Smart Mater. Struct. 27(9), 095018 (2018)

    Google Scholar 

  12. P. Saxena, P. Shukla, A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv. Compos. Hybrid. Mater. 4(1), 8–26 (2021)

    CAS  Google Scholar 

  13. D.M. Nivedhitha, S. Jeyanthi, Polyvinylidene fluoride, an advanced futuristic smart polymer material: a comprehensive review. Polym. Adv. Technol. 34(2), 474–505 (2022)

    Google Scholar 

  14. X. Zhang, W. Xia, J. Liu, M. Zhao, M. Li, J. Xing, PVDF-based and its copolymer-based piezoelectric composites: preparation methods and applications. J. Electron. Mater. 51(10), 5528–5549 (2022)

    CAS  Google Scholar 

  15. P.K. Mahato, A. Seal, S. Garain, S. Sen, Effect of fabrication technique on the crystalline phase and electrical properties of PVDF films. Mater. Sci. 33(1), 157–162 (2015)

    CAS  Google Scholar 

  16. S. Debili, A. Gasmi, M. Bououdina, Synergistic effects of stretching/polarization temperature and electric field on phase transformation and piezoelectric properties of polyvinylidene fluoride nanofilms. Appl. Phys. A 126(4), 309 (2020)

    CAS  Google Scholar 

  17. A. Gebrekrstos, M. Sharma, G. Madras, S. Bose, New physical insights into shear history dependent polymorphism in poly(vinylidene fluoride). Cryst. Growth Des. 16(5), 2937–2944 (2016)

    CAS  Google Scholar 

  18. Y. Wu, S.L. Hsu, C. Honeker, D.J. Bravet, D.S. Williams, The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J. Phys. Chem. B 116(24), 7379–7388 (2012)

    CAS  Google Scholar 

  19. B.S. Athira, A. George, K. Vaishna Priya, U.S. Hareesh, E.B. Gowd, K.P. Surendran, A. Chandran, High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO3 nanofibers for self-powered vibration sensing applications. ACS Appl. Mater. Interfaces 14(39), 44239–44250 (2022)

    CAS  Google Scholar 

  20. B. Zhao, Z. Chen, Z. Cheng, S. Wang, T. Yu, W. Yang, Y. Li, Piezoelectric nanogenerators based on electrospun PVDF-coated mats composed of multilayer polymer-coated BaTiO3 nanowires. ACS Appl. Nano Mater. 5(6), 8417–8428 (2022)

    CAS  Google Scholar 

  21. N. Jia, Q. Xing, G. Xia, J. Sun, R. Song, W. Huang, Enhanced β-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater. Lett. 139, 212–215 (2015)

    CAS  Google Scholar 

  22. R. Mitra, B. Sheetal Priyadarshini, A. Ramadoss, U. Manju, Stretchable polymer-modulated PVDF-HFP/TiO2 nanoparticles-based piezoelectric nanogenerators for energy harvesting and sensing applications. Mat. Sci. Eng. B 286, 116029 (2022)

    CAS  Google Scholar 

  23. L. Liu, W. Fu, L. Wang, H. Tian, X. Shan, Piezoelectricity of PVDF composite film doped with dopamine coated nano-TiO2. J. Alloys Compd. 885, 160829 (2021)

    CAS  Google Scholar 

  24. K. Yoon, A. Kelarakis, Nanoclay-directed structure and morphology in PVDF electrospun membranes. J. Nanomater. 2014, 1–7 (2014)

    Google Scholar 

  25. S. Tiwari, A. Gaur, C. Kumar, P. Maiti, Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy 171, 485–492 (2019)

    CAS  Google Scholar 

  26. G. Chen, G. Chen, L. Pan, D. Chen, Electrospun flexible PVDF/GO piezoelectric pressure sensor for human joint monitoring. Diam. Relat. Mater. 129, 109358 (2022)

    CAS  Google Scholar 

  27. M.M. Abolhasani, K. Shirvanimoghaddam, M. Naebe, PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos. Sci. Technol. 138, 49–56 (2017)

    CAS  Google Scholar 

  28. R.T. Selvan, C.Y. Jia, W.A.D.M. Jayathilaka, A. Chinappan, H. Alam, S. Ramakrishna, Enhanced piezoelectric performance of electrospun PVDF-MWCNT-Cu nanocomposites for energy harvesting application. NANO 15(04), 2050049 (2020)

    CAS  Google Scholar 

  29. S. Bairagi, S.W. Ali, Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator. Soft Matter 16(20), 4876–4886 (2020)

    CAS  Google Scholar 

  30. K. Ke, P. Pötschke, D. Jehnichen, D. Fischer, B. Voit, Achieving β-phase poly(vinylidene fluoride) from melt cooling: effect of surface functionalized carbon nanotubes. Polymer 55(2), 611–619 (2014)

    CAS  Google Scholar 

  31. A. Issa, M. Al-Maadeed, A. Luyt, D. Ponnamma, M. Hassan, Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. C J. Carbon Res. 3(4), 30 (2017)

    Google Scholar 

  32. S. Manna, S.K. Batabyal, A.K. Nandi, Preparation and characterization of silver—poly(vinylidene fluoride) nanocomposites: formation of piezoelectric polymorph of poly(vinylidene fluoride). J. Phys. Chem. B 110(25), 12318–12326 (2006)

    CAS  Google Scholar 

  33. J. Yan, Y.G. Jeong, High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl. Mater. Interfaces 8(24), 15700–15709 (2016)

    CAS  Google Scholar 

  34. M. Abbasipour, R. Khajavi, A.A. Yousefi, M.E. Yazdanshenas, F. Razaghian, The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. J. Mater. Sci. 28(21), 15942–15952 (2017)

    CAS  Google Scholar 

  35. X. Cai, T. Lei, D. Sun, L. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7(25), 15382–15389 (2017)

    CAS  Google Scholar 

  36. T. Zhu, C. Qian, W. Zheng, R. Bei, S. Liu, Z. Chi, X. Chen, Y. Zhang, J. Xu, Modified halloysite nanotube filled polyimide composites for film capacitors: high dielectric constant, low dielectric loss and excellent heat resistance. RSC Adv. 8(19), 10522–10531 (2018)

    CAS  Google Scholar 

  37. H. Kang, X. Liu, S. Zhang, J. Li, Functionalization of halloysite nanotubes (HNTs) via mussel-inspired surface modification and silane grafting for HNTs/soy protein isolate nanocomposite film preparation. RSC Adv. 7(39), 24140–24148 (2017)

    CAS  Google Scholar 

  38. S.B. Shivanna, M.Q.A. Al-Gunaid, F.H. Al-Ostoot, N. Al-Zaqri, A. Boshaala, S.J. Siddaramaiah, Anasuya, Probing optical efficiency and electrochemical behaviors of polycarbonate incorporating conducting PANI and halloysite nanotubes (HNTs) as core–shell nanofillers. Polym. Bull. 79(11), 10333–10355 (2022)

    CAS  Google Scholar 

  39. G. Cao, S. Cai, H. Zhang, Y. Chen, Y. Tian, High-performance conductive polymer composites by incorporation of polyaniline-wrapped halloysite nanotubes and silver microflakes. ACS Appl. Polym. Mater. 4(5), 3352–3360 (2022)

    CAS  Google Scholar 

  40. Y. Zhang, X. He, J. Ouyang, H. Yang, Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property. Sci. Rep. 3, 2948 (2013)

    Google Scholar 

  41. W.L. Zhang, H.J. Choi, Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology. Colloid Polym. Sci. 290(17), 1743–1748 (2012)

    CAS  Google Scholar 

  42. M. Khalifa, S. Anandhan, PVDF nanofibers with embedded polyaniline–graphitic carbon nitride nanosheet composites for piezoelectric energy conversion. ACS Appl. Nano Mater. 2(11), 7328–7339 (2019)

    CAS  Google Scholar 

  43. M. Khalifa, A. Mahendran, S. Anandhan, Durable, efficient, and flexible piezoelectric nanogenerator from electrospun PANi/HNT/PVDF blend nanocomposite. Polym. Compos. 40(4), 1663–1675 (2018)

    Google Scholar 

  44. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci. 22(4), 273–280 (2012)

    Google Scholar 

  45. J. Han, W. Xing, J. Yan, J. Wen, Y. Liu, Y. Wang, Z. Wu, L. Tang, J. Gao, Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination. Adv. Fiber Mater. 4(5), 1233–1245 (2022)

    CAS  Google Scholar 

  46. C.M. Goodwin, Z.E. Voras, X. Tong, T.P. Beebe, Soft Ion sputtering of pani studied by XPS, AFM, TOF-SIMS, and STS. Coatings 10(10), 967 (2020)

    CAS  Google Scholar 

  47. X. Wang, P. Fan, S. Wang, H. Liu, L. Liao, Nanotubular polyaniline/reduced graphene oxide composite synthesized from a natural halloysite template for application as a high performance supercapacitor electrode. ChemistrySelect 7(5), e202104402 (2022)

    CAS  Google Scholar 

  48. T. Zhou, C. Li, H. Jin, Y. Lian, W. Han, Effective adsorption/reduction of cr(VI) oxyanion by halloysite@polyaniline hybrid nanotubes. ACS Appl. Mater. Interfaces 9(7), 6030–6043 (2017)

    CAS  Google Scholar 

  49. H. Liu, B. Xu, M. Jia, M. Zhang, B. Cao, X. Zhao, Y. Wang, Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors. Appl. Surf. Sci. 332, 40–46 (2015)

    CAS  Google Scholar 

  50. Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6), 4350–4358 (2011)

    CAS  Google Scholar 

  51. C. Merlini, A. Pegoretti, T.M. Araujo, S.D.A.S. Ramoa, W.H. Schreiner, O. de Barra, Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride) blends. Synth. Met. 213, 34–41 (2016)

    CAS  Google Scholar 

  52. H. Yu, T. Huang, M. Lu, M. Mao, Q. Zhang, H. Wang, Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 24(40), 405401 (2013)

    Google Scholar 

  53. S. Shetty, A. Mahendran, S. Anandhan, Development of a new flexible nanogenerator from electrospun nanofabric based on PVDF/talc nanosheet composites. Soft Matter 16(24), 5679–5688 (2020)

    CAS  Google Scholar 

  54. V. Jacobs, R.D. Anandjiwala, M. Maaza, The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J. Appl. Polym. Sci. 115(5), 3130–3136 (2010)

    CAS  Google Scholar 

  55. J.G. Shin, C.S. Park, E.Y. Jung, B.J. Shin, H.S. Tae, Synthesis of a polyaniline nanoparticle using a solution plasma process with an ar gas bubble channel. Polymers 11(1), 105 (2019)

    Google Scholar 

  56. S.A. Haddadi, A. Ramazani, S.A.S. Talebi, S. Fattahpour, M. Hasany, Investigation of the effect of nanosilica on rheological, thermal, mechanical, structural, and piezoelectric properties of poly(vinylidene fluoride) nanofibers fabricated using an electrospinning technique. Ind. Eng. Chem. Res. 56(44), 12596–12607 (2017)

    CAS  Google Scholar 

  57. C. Chen, Z. Bai, Y. Cao, M. Dong, K. Jiang, Y. Zhou, Y. Tao, S. Gu, J. Xu, X. Yin, W. Xu, Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Compos. Sci. Technol. 192, 108100 (2020)

    CAS  Google Scholar 

  58. M. Khalifa, B. Deeksha, A. Mahendran, S. Anandhan, Synergism of electrospinning and nano-alumina trihydrate on the polymorphism, crystallinity and piezoelectric performance of PVDF nanofibers. Jom 70(7), 1313–1318 (2018)

    CAS  Google Scholar 

  59. S. Bodkhe, P.S.M. Rajesh, S. Kamle, V. Verma, Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay. J. Polym. Res. 21(5), 434 (2014)

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Joint Funds of the National Science Foundation of China (Grant No. U20A20172).

Funding

Joint Funds of the National Science Foundation of China, Grant No. U20A20172.

Author information

Authors and Affiliations

Authors

Contributions

PF, and JY supervised this project. ZQ, SZ, and PF proposed and designed the research. ZQ, SZ, JJ, and JH performed the characterizations. ZQ, SZ, JHJL, and PF analyzed the data and discussed the results. ZQ and PF wrote the manuscript draft, while all authors gave the comments.

Corresponding authors

Correspondence to Ping Fan or Jintao Yang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or personal relationships.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed content was obtained from all individual participants involved in the study.

Research involving human and/or animal participants

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 534.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Zhang, S., Huang, J. et al. Effect of HNT@PANI hybrid nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. J Mater Sci: Mater Electron 34, 1352 (2023). https://doi.org/10.1007/s10854-023-10699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10699-x

Navigation