Skip to main content
Log in

Trimethylamine sensing properties of MoO3 nanofibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The efficient and reliable monitoring of trimethylamine (TMA) is significant to environmental protection and human healthcare. The Molybdenum trioxide (MoO3) nanofibers can be regarded as a promising sensing material with a low-detection limit for trimethylamine. MoO3 nanofibers with controlled morphology were synthesized by adjusting electrospinning and calcination conditions. MoO3 with the second-step calcination time is 90 s, which shows excellent trimethylamine sensing properties. The response of sensors based on M-90 nanofibers to 50 ppm acetone is 82.3 at 175 °C. And it has excellent selectivity to TMA. The sensors show good selectivity to TMA, compared to other gases to be measured. Finally, a detailed study of the sensing mechanism of MoO3 is conducted to analyze the reasons for exhibiting high response to TMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. W.-H. Zhang, W.-D. Zhang, Fabrication of SnO2-ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes. Sens. Actuators B 134, 403–408 (2008)

    CAS  Google Scholar 

  2. J. Zhang, P. Song, Z. Li, S. Zhang, Z. Yang, Q. Wang, Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles. J. Alloy. Compd. 685, 1024–1033 (2016)

    CAS  Google Scholar 

  3. Y. Sivalingam, P. Elumalai, S.V.J. Yuvaraj, G. Magna, V.J. Sowmya, R. Paolesse et al., Interaction of VOCs with pyrene tetratopic ligands layered on ZnO nanorods under visible light. J. Photochem. Photobiol. A 324, 62–69 (2016)

    CAS  Google Scholar 

  4. C. Zhao, J. Shen, S. Xu, J. Wei, H. Liu, S. Xie et al., Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO3 nanosheets for rapid assessment of seafood freshness. Food Chem. 392, 133318 (2022)

    CAS  Google Scholar 

  5. J. Chao, Y. Chen, S. Xing, D. Zhang, W. Shen, Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor. Sens. Actuators B 298, 126927 (2019)

    CAS  Google Scholar 

  6. H.-N. Chun, J.-H. Cho, H.-S. Shin, Influence of different storage conditions on production of trimethylamine and microbial spoilage characteristics of mackerel products. Food Sci. Biotechnol. 23, 1411–1416 (2014)

    CAS  Google Scholar 

  7. G. Summers, R.D. Wibisono, D.I. Hedderley, G.C. Fletcher, Trimethylamine oxide content and spoilage potential of New Zealand commercial fish species. NZ J. Mar. Freshwat. Res. 51, 393–405 (2016)

    Google Scholar 

  8. S.H. Lee, J.H. Lim, J. Park, S. Hong, T.H. Park, Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine. Biosens. Bioelectron. 71, 179–185 (2015)

    CAS  Google Scholar 

  9. K. Mitsubayashi, Y. Kubotera, K. Yano, Y. Hashimoto, T. Kon, S. Nakakura et al., Trimethylamine biosensor with flavin-containing monooxygenase type 3 (FMO3) for fish -freshness analysis. Sens. Actuators B 103, 463–467 (2004)

    CAS  Google Scholar 

  10. D. Meng, D. Liu, G. Wang, Y. Shen, X. San, J. Si et al., In-situ growth of ordered Pd-doped ZnO nanorod arrays on ceramic tube with enhanced trimethylamine sensing performance. Appl. Surf. Sci. 463, 348–356 (2019)

    CAS  Google Scholar 

  11. Y.H. Cho, Y.C. Kang, J.-H. Lee, Highly selective and sensitive detection of trimethylamine using WO3 hollow spheres prepared by ultrasonic spray pyrolysis. Sens. Actuators B 176, 971–977 (2013)

    CAS  Google Scholar 

  12. S.Y. Zhao, P.H. Wei, S.H. Chen, Enhancement of trimethylamine sensitivity of MOCVD-SnO2 thin film gas sensor by thorium. Sens. Actuators B 62, 117–120 (2000)

    CAS  Google Scholar 

  13. X. Chu, S. Liang, W. Sun, W. Zhang, T. Chen, Q. Zhang, Trimethylamine sensing properties of sensors based on MoO3 microrods. Sens. Actuators B 148, 399–403 (2010)

    CAS  Google Scholar 

  14. S. Acharyya, S. Nag, S. Kimbahune, A. Ghose, A. Pal, P.K. Guha, Selective discrimination of VOCs applying gas sensing kinetic analysis over a metal oxide-based chemiresistive Gas Sensor. ACS Sens. 6, 2218–2224 (2021)

    CAS  Google Scholar 

  15. S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensor: a review. Nano Energy 79, 105369 (2021)

    CAS  Google Scholar 

  16. H. Nazemi, A. Joseph, J. Park, A. Emadi, Advanced micro- and nano-gas sensor technology: a review. Sensors (Basel) 19, 1285 (2019)

    CAS  Google Scholar 

  17. M. Rashed, M. Faisal, F. Harraz, M. Jalalah, M. Alsaiari, M. Al-Assiri, rGO/ZnO/Nafion nanocomposite as highly sensitive and selective amperometric sensor for detecting nitrite ions (NO2-). J. Taiwan Inst. Chem. Eng. 112, 345–356 (2020)

    CAS  Google Scholar 

  18. B. Chang, C. Wang, H. Lai, R. Wu, M. Chaval, Evaluation of Pt/In2O3-WO3 nano powder ultra-trace level NO gas sensor. J. Taiwan Inst. Chem. Eng. 45, 1056–1064 (2014)

    CAS  Google Scholar 

  19. G. Lei, C. Lou, X. Liu, J. Xie, Z. Li, W. Zheng et al., Thin films of tungsten oxide materials for advanced gas sensors. Sens. Actuators B 341, 129996 (2021)

    CAS  Google Scholar 

  20. D. An, Q. Wang, X. Tong, X. Lian, Y. Zou, Y. Li, ZnO-enhanced In2O3-based sensors for n-butanol gas. Ceram. Int. 45, 6869–6874 (2019)

    CAS  Google Scholar 

  21. N. Zhang, F. Xie, J. Wang, Q. Zhang, S. Zhang, L. Wang, High Throughput screening of surface modificated In2O3 for VOC gas sensing array optimization. IEEE Sens. J. 20, 7318–7325 (2020)

    CAS  Google Scholar 

  22. S. Zhang, M. Yang, K. Liang, A. Turak, B. Zhang, D. Meng et al., An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sens. Actuators B 290, 59–67 (2019)

    CAS  Google Scholar 

  23. C. Zhao, J. Bai, B. Huang, Y. Wang, J. Zhou, E. Xie, Grain refining effect of calcium dopants on gas-sensing properties of electrospun α-Fe2O3 nanotubes. Sens. Actuators B 231, 552–560 (2016)

    CAS  Google Scholar 

  24. J. Hong, F. Yang, Z. Sun, Hexagonal bi-pyramid α-Fe2O3 microcrystals: unusual formation, characterization and application for gas sensing. J. Alloy. Compd. 889, 161515 (2021)

    Google Scholar 

  25. M. Inaba, T. Oda, M. Kono, N. Phansiri, T. Morita, S. Nakahara et al., Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly. Sens. Actuators B 344, 130257 (2021)

    CAS  Google Scholar 

  26. R. Zhang, Z. Xu, T. Zhou, T. Fei, R. Wang, T. Zhang, Improvement of gas sensing performance for tin dioxide sensor through construction of nanostructures. J Colloid Interface Sci. 557, 673–682 (2019)

    CAS  Google Scholar 

  27. D. Jiang, Y. Wang, W. Wei, F. Li, Y. Li, L. Zhu et al., Xylene sensor based on α-MoO3 nanobelts with fast response and low operating temperature. RSC Adv. 5, 18655–18659 (2015)

    CAS  Google Scholar 

  28. J. Shen, S. Guo, C. Chen, L. Sun, S. Wen, Y. Chen et al., Synthesis of Ni-doped α-MoO3 nanolamella and their improved gas sensing properties. Sens. Actuators B 252, 757–763 (2017)

    CAS  Google Scholar 

  29. L. Zhu, J.N. Wang, J.W. Liu, L. Wang, W. Yan, Applications of electrospun one-dimensional nanomaterials in gas sensors. Prog. Chem. 32, 344–360 (2020)

    CAS  Google Scholar 

  30. H.S. Gu, Z. Wang, Y.M. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors 12, 5517–5550 (2012)

    CAS  Google Scholar 

  31. X. Li, J. Xu, L. Mei, Z. Zhang, C. Cui, H. Liu, J. Ma, S. Doua, Electrospinning of crystalline MoO3@C nanofibers for high-rate lithium storage. J. Mater. Chem. A 3, 3257 (2015)

    CAS  Google Scholar 

  32. R. Thangappan, R. Dhinesh Kumar, R. Jayavel, Facile synthesis and characterization of molybdenum oxide (MoO3) nanofibers and submicron rods by electrospinning technique for potential application in photocatalytic activity. J. Clust. Sci. 33, 2209–2214 (2022)

    CAS  Google Scholar 

  33. Y. Han, Y. Rheem, K.-H. Lee, H. Kim, N.V. Myung, Synthesis and characterization of orthorhombic-MoO3 nanofibers with controlled morphology and diameter. J. Ind. Eng. Chem. 62, 231–238 (2018)

    CAS  Google Scholar 

  34. C. Feng, X. Kou, B. Chen, G. Qian, Y. Sun, G. Lu, One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sens. Actuators B 253, 584–591 (2017)

    CAS  Google Scholar 

  35. Y. Guan, D. Wang, X. Zhou, P. Sun, H. Wang, J. Ma et al., Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures. Sens. Actuators B 191, 45–52 (2014)

    CAS  Google Scholar 

  36. S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang et al., High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas. Sens. Actuators B 226, 478–485 (2016)

    CAS  Google Scholar 

  37. F. Shayeganfar, A. Rochefort, Electronic properties of self-assembled trimesic acid monolayer on graphene. Langmuir 30, 9707–9716 (2014)

    CAS  Google Scholar 

  38. C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong et al., Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Appl. Phys. Lett. 93, 193307 (2008)

    Google Scholar 

  39. W. Tang, H. Liu, C. Li, Y. Zhang, H. Sun, T. Peng et al., Facile synthesis of LaNi1-TixO3 nanoparticles and enhanced ethanol-sensing characteristics. J. Phys. Chem. Solids 134, 5–13 (2019)

    CAS  Google Scholar 

  40. S. Wang, J. Xie, J. Hu, H. Qin, Y. Cao, Fe-doped α-MoO3 nanoarrays: facile solid-state synthesis and excellent xylene-sensing performance. Appl. Surf. Sci. 512, 145722 (2020)

    CAS  Google Scholar 

  41. H.M. Yang, S.Y. Ma, G.J. Yang, Q. Chen, Q.Z. Zeng, Q. Ge et al., Synthesis of La2O3 doped Zn2SnO4 hollow fibers by electrospinning method and application in detecting of acetone. Appl. Surf. Sci. 425, 585–593 (2017)

    CAS  Google Scholar 

  42. E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: a review. Crit. Rev. Solid State Mater. Sci. 42, 416–432 (2016)

    Google Scholar 

  43. Y. Liang, Y. Yang, C. Zou, K. Xu, X. Luo et al., 2D ultra-thin WO3 nanosheets with dominant 002 crystal facets for high-performance xylene sensing and methyl orange photocatalytic degradation. J. Alloy. Compd. 783, 848–854 (2019)

    CAS  Google Scholar 

  44. C.-H. Kwak, H.-S. Woo, J.-H. Lee, Selective trimethylamine sensors using Cr2O3-decorared SnO2 nanowires. Sens. Actuactors B 204, 231–238 (2014)

    CAS  Google Scholar 

  45. S. Zhang, P. Song, J. Zhang, Z. Yang, Q. Wang, In2O3-functionalized MoO3 heterostructure nanobelts with improved gas-sensing performance. RSC Adv. 6, 50423–50430 (2016)

    CAS  Google Scholar 

  46. J. Shen, S. Xu, C. Zhao, X. Qiao, H. Liu, Y. Zhao et al., Bimetallic Au@Pt nanocrystal sensitization mesoporous alpha-Fe2O3 hollow nanocubes for highly sensitive and rapid detection of fish freshness at low temperature. ACS Appl. Mater. Interfaces 13, 57597–57608 (2021)

    CAS  Google Scholar 

  47. L. Liu, S. Fu, X. Lv, L. Yue, L. Fan, H. Yu et al., A gas sensor with Fe2O3 nanospheres based on trimethylamine detection for the rapid assessment of spoilage degree in fish. Front. Bioeng. Biotechnol. 8, 567584 (2020)

    Google Scholar 

  48. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu et al., Semiconducting metal oxide as gas sensors for environmentally hazardous gases. Sens. Actuators B 160, 580–591 (2011)

    CAS  Google Scholar 

  49. C. Zheng, C. Zhang, L. He, K. Zhang, J. Zhang, L. Jin et al., ZnFe2O4/ZnO nanosheets assembled microspheres for high performance trimethylamine gas sensing. J. Alloy. Compd. 849, 156461 (2020)

    CAS  Google Scholar 

  50. L. Liu, P. Song, Z. Yang, Q. Wang, Highly sensitive and selective trimethylamine sensors based on WO3 nanorods decorated with Au nanoparticles. Physica E: Low-Dimens. Syst. Nanostruct. 90, 109–115 (2017)

    CAS  Google Scholar 

  51. X. Lu, Q. Yu, K. Wang, L. Shi, X. Liu, A. Qiu et al., Synthesis, characterization and gas sensing properties of flowerlike In2O3 composed of microrods. Cryst. Res. Technol. 45, 557–561 (2010)

    CAS  Google Scholar 

  52. Z. Liu, F. Li, J. Deng, L. Wang, T. Zhang, Branch-like hierarchical heterostructure (alpha-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. ACS Appl. Mater. Interfaces 5, 12310–12316 (2013)

    Google Scholar 

Download references

Funding

This study was supported by the Fundamental Research Funds for the Inner Mongolia Autonomous Region Science and Technology Plan Project under Grant No. 2020GG0185, National Nature Science Foundation of China (Grant No. 61703348 and 61801400), the Central Universities under Grant No. XDJK2019C069.

Author information

Authors and Affiliations

Authors

Contributions

SZ: writing–original draft, investigation, validation. JW: formal analysis, data curation. QL: resources. WW: data curation. ZW: data curation. YW: investigation. CF: supervision, funding acquisition, writing—review & editing, conceptualization.

Corresponding author

Correspondence to Changhao Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, financial interests, or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, S., Wu, J., Wang, B. et al. Trimethylamine sensing properties of MoO3 nanofibers. J Mater Sci: Mater Electron 34, 1262 (2023). https://doi.org/10.1007/s10854-023-10695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10695-1

Navigation