Abstract
Dense niobate glass ceramics with a principal crystalline phase of KSr2Nb5O15 were obtained via melt-quenching and controlled crystallization technique. The research results reveal that with the crystallization temperature increasing from 800 to 950 °C, the dielectric constant and crystal phase content raise simultaneously. The achieved recoverable energy density (Wrec) displays a continuous increase from 0.61 to 1.23 J/cm3 (@500 kV/cm) with the increment of crystallization temperature from 800 to 950 °C. The glass ceramic obtained at 850 °C exhibits the supreme discharge energy density of 1.82 J/cm3 (@ 700 kV/cm), power density of 192.8 MW/cm3 and energy efficiency of 82%. These findings show that the acquired glass ceramics have potential applications in energy storage fields.
Similar content being viewed by others
Data availability
Our datasets of the paper are available from the corresponding author on reasonable request.
References
P. Jiang, J. Yuan, H. Liu, L. Wang, H. Li, W. Xie, Q. Zhang, IEEE Trans. Plasma Sci. 45, 698 (2017)
X. Du, Y. Pu, X. Peng, R. Li, Q. Zhang, M. Chen, G. Liu, Ceram. Int. 46, 11492 (2020)
S. Xiao, S. Xiu, K. Yang, B. Shen, J. Zhai, J. Electr. Mater. 47, 834 (2018)
T. Liu, G. Chen, J. Song, C. Yuan, Trans. Nonferrous Met. Soc. China 24, 729 (2014)
S. Xie, C. Liu, H. Bai, T. Fu, B. Shen, J. Zhai, J. Alloys Compd. 910, 164923 (2022)
J. Song, G. Chen, J. Mater. Sci. Mater. Electron. 25, 349 (2014)
F. Luo, Y. Qin, F. Shang, G. Chen, Ceram. Int. 48, 30661 (2022)
X. Peng, Y. Pu, X. Du, J. Ji, P. Gao, L. Zhang, Z. Sun, Chem. Eng. J. 422, 130027 (2021)
H. Wang, J. Liu, J. Zhai, B. Shen, J. Am. Ceram. Soc. 99, 2909 (2016)
P.V. Divya, G. Vignesh, V. Kumar, J. Phys. D: Appl. Phys. 40, 7804 (2007)
C. Liu, S. Xie, H. Bai, F. Yan, T. Fu, B. Shen, J. Zhai, J. Materiomics 8, 763 (2022)
Y. Yang, J. Song, G. Chen, C. Yuan, X. Li, C. Zhou, J. Non-Cryst Solids 410, 96 (2015)
D. Feng, H. Du, H. Ran, T. Lu, S. Xia, L. Xu, Z. Wang, C. Ma, J. Solid State Chem. 310, 123081 (2022)
D.F. Han, Q.M. Zhang, J. Luo, Q. Tang, J. Du, Solid State Sci. 14, 661 (2012)
Q. Zhang, J. Luo, Q. Tang, D. Han, Y. Zhou, J. Du, J. Nanosci. Nanotechnol. 12, 8832 (2012)
Y. Zhou, Q. Zhang, J. Luo, Q. Tang, J. Du, Scripta Mater. 65, 296 (2011)
S. Xie, C. Liu, H. Bai, K. Chen, B. Shen, J. Zhai, J. Mater. Sci. 56, 16278 (2021)
Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Adv. Mater. 29, 1601727 (2017)
T. Kimura, S. Miyamoto, T. Yamaguchi, J. Am. Ceram. Soc. 73, 127 (1990)
L. Liu, Z. Hou, X. Quan, Mater. Sci.Eng.: B 211, 1 (2016)
D. Jiang, F. Shang, G. Chen, Ceram. Int. 47, 27142 (2021)
D. Jiang, Y. Zhong, F. Shang, G. Chen, J. Mater. Sci: Mater. Electron. 31, 12074 (2020)
L. Liu, F. Gao, G. Hu, J. Liu, J. Li, J. Alloys Compd. 580, 93 (2013)
G. Chen, T. Liu, C. Yuan, Y. Yang, C. Zhou, J. Non-Cryst Solids 378, 241 (2013)
S. Wang, J. Tian, T. Jiang, J. Zhai, B. Shen, Ceram. Int. 44, 23109 (2018)
H. Wang, J. Liu, J. Zhai, Z. Pan, B. Shen, J. Eur. Ceram. Soc. 37, 3917 (2017)
K. Chen, T. Jiang, B. Shen, J. Zhai, Mater. Sci. Eng.: B 263, 114885 (2021)
S. Xue, S. Xiao, J. Zhai, J. Mater. Sci. Mater. Electron. 29, 730 (2018)
L. Liu, Y. Wang, Z. Hou, R. Lv, Mater. Sci. Eng.: B269, 115174 (2021)
S. Cao, J. Xu, L. Jin, J. Zhao, Z. Ma, Q. Chen, J. Liu, F. Gao, J. Materiomics 7, 976 (2021)
Y. Zeng, X. Qin, S. Jiang, G. Zhang, L. Zhang, J. Am. Ceram. Soc. 94, 469 (2011)
P. Prapitpongwanich, R. Harizanova, K. Pengpat, C. Rüssel, Mater. Lett. 63, 1027 (2009)
B.H. Venkataraman, T. Fujiwara, K.B.R. Varma, T. Komatsu, Mater. Chem. Phys. 117, 244 (2009)
J. Tian, S. Wang, K. Yang, J. Liu, J. Zhai, B. Shen, Ceram. Int. 44, 15490 (2018)
S. Xu, Z. Deng, S. Shen, L. Wei, Z. Yang, Ceram. Int. 46, 13997 (2020)
A.L. Young, G.E. Hilmas, S.C. Zhang, R.W. Schwartz, J. Mater. Sci. 42, 5613 (2007)
W. Cao, P. Chen, R. Lin, F. Li, B. Ge, D. Song, Z. Cheng, C. Wang, Compos. Part B: Eng. 255, 110630 (2023)
L. Zhang, Y. Pu, M. Chen, J. Alloys Compd. 775, 342 (2019)
K. Yang, J. Liu, B. Shen, J. Zhai, S. Wang, J. Tian, Ceram. Int. 44, 6181 (2018)
X. Du, Y. Pu, X. Li, X. Peng, Z. Sun, J. Zhang, J. Ji, R. Li, Q. Zhang, M. Chen, Ceram. Int. 47, 8987 (2021)
S. Wang, J. Tian, J. Liu, K. Yang, B. Shen, J. Zhai, J. Mater. Chem. C 6, 12608 (2018)
K. Chen, H. Bai, F. Yan, X. He, C. Liu, S. Xie, B. Shen, J. Zhai, ACS Appl. Mater. Interfaces 13, 4236 (2021)
Funding
This research was supported by Guangxi Science & Technology Planning Project (Grant No. AD21220138), National Natural Science Foundation of China (Grant No. 52162001), Project of Guangxi Key Laboratory of Information Materials (Grant No. 211009-Z).
Author information
Authors and Affiliations
Contributions
XG performed the fabrication of glass ceramics and carried out the performance testing. YW performed the dielectric, ferroelectric testing. FS and GC presented the concept and provided resources, and revised the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no confict of interest.
Additional information
Publisher’s Note
Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Geng, X., Wang, Y., Shang, F. et al. Crystallization temperature dependence of phase evolution and energy storage feature of KSr2Nb5O15 based glass ceramics. J Mater Sci: Mater Electron 34, 1264 (2023). https://doi.org/10.1007/s10854-023-10686-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10854-023-10686-2