Skip to main content
Log in

Functional properties of transparent Al, Mg-doped and Al-Mg co-doped ZnO nanostructures grown by electrochemical and chemical bath deposition: a comparative study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped (ZnO), Al, Mg-doped (AZO, MZO), and Al–Mg co-doped ZnO (AZMO) nanostructures with different concentrations ratios of Al/Mg were deposited on conductive FTO substrate via two methods of deposition in solution: electrodeposition (ED) and chemical bath deposition (CBD). The effect of varied amounts of Al/Mg was characterized via electrochemical, Mott–Schottky (M-S), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and optical transmittance techniques. Experimental results revealed that, M–S plots of conductivity n-type were observed for all samples. An increase in the density of the charge carriers (ND) from 1019 to 1020 cm−3, is clearly observed with the amounts of Al/Mg for both deposition methods. According to the FE-SEM observations, when the amount of Al/Mg is increased in the solution, the grains size decreases. AFM morphological analysis indicated that the surface morphology and the roughness were significantly influenced by the amounts of Al/Mg and the elaboration process. XRD patterns revealed that all nanostructures of deposits have a hexagonal wurtzite structure and polycrystalline nature with a (002) and (100) preferential orientation for ED and CBD, respectively. The values of crystallite size were 29 and 27 nm for the ZnO nanostructures synthesized via electrodeposition and chemical bath deposition, respectively. Interestingly, for both doped and co-doped samples; the values were small indicating poor crystallization. From optical measurements, band gaps obtained for ZnO nanostructures deposited by ED and CBD are 3.28 and 3.20 eV, respectively. In addition, an increase in the visible transmission and optical gap of doped nanostructures was observed for both processes (> 89 %), suggesting larger prospects for its use in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data availability statements provide a statement about where data supporting the results reported. In a published article can be found—including, where applicable, hyperlinks to publicly archived datasets analysed or generated during the study.

References

  1. D. Lincot, MRS Bull. 35, 778–789 (2010)

    CAS  Google Scholar 

  2. L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater Today. 10, 40–48 (2007)

    CAS  Google Scholar 

  3. M. Ding, Z. Guo, L. Zhou, X. Fang, L. Zhang, L. Zeng, L. Xie, H. Zhao, Crystals 8, 223 (2018)

    Google Scholar 

  4. H. Tanaka, K. Ihara, T. Miyata, H. Sato, T. Minami, J. Vac. Sci. Technol. A: Vac. Surf. Films. 22, 1757 (2004)

    CAS  Google Scholar 

  5. S. Fiat Varol, G. Babür, G. Çankaya, U. Kölemen, Synthesis of sol–gel derived nano-crystalline ZnO thin films as TCO window layer: effect of sol aging and boron. RSC Adv. 4, 56645 (2014)

    CAS  Google Scholar 

  6. O. Baka, M.R. Khelladi, L. Mentar, A. Azizi, J Korean Phys Soc. 67, L2011–L2014 (2015)

    Google Scholar 

  7. S. Liu, L. Zhu, W. Cao, P. Li, Z. Zhan, Z. Chen, X. Yuan, J. Wang, Defect-related optical properties of Mg-doped ZnO nanoparticles synthesized via low temperature hydrothermal method. J Alloys Compd. 858, 157654 (2021)

    CAS  Google Scholar 

  8. X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, J. Phys. D Appl. Phys. 39, 4992 (2006)

    CAS  Google Scholar 

  9. Z.F. Liu, F.K. Shan, J.Y. Sohn, S.C. Kim, G.Y. Kim, Y.X. Li, Y.S. Yu, J. Electroceram. 13, 183 (2004)

    CAS  Google Scholar 

  10. O. Baka, A. Azizi, S. Velumani, G. Schmerber, A. Dinia, J. Mater. Sci. Mater. Electron. 25, 1761 (2014)

    CAS  Google Scholar 

  11. Z.X. Yang, Y. Huang, G.N. Chen, Z.P. Guo, S.Y. Cheng, S.Z. Huang, Sens. Actuators B. Chem. 140, 549 (2009)

    CAS  Google Scholar 

  12. R. Kara, L. Mentar, A. Azizi, RSC Adv. 10, 40467 (2020)

    CAS  Google Scholar 

  13. S. Ren, H. Wang, Y. Li, H. Li, R. He, L. Wu, W. Li, J. Zhang, W. Wang, L. Feng, Sol. Energy Mater. Sol. Cells. 187, 97 (2018)

    CAS  Google Scholar 

  14. Y. Kuwahata, T. Minemoto, Renew. Energy 65, 113 (2014)

    CAS  Google Scholar 

  15. M. Kralji, Z. Mandic, L. Dui, Corros. Sci. 45, 181 (2003)

    Google Scholar 

  16. N. Winkler, S. Edinger, W. Kautek, T. Dimopoulos, J. Mater. Sci. 53, 5159–5171 (2018)

    CAS  Google Scholar 

  17. M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 68, 2439 (1996)

    CAS  Google Scholar 

  18. M. Izaki, T. Omi, Electrolyte optimization for cathodic growth of zinc oxide films. J. Electrochem. Soc. 143(3), 53–55 (1996)

    Google Scholar 

  19. D.F. Watson, A. Marton, A.M. Stux, G.J. Meyer, J. Phys. Chem. B. 107, 10971 (2003)

    CAS  Google Scholar 

  20. M. Chemla, V. Bertagna, R. Erre, F. Rouelle, S. Petitdidier, D. Levy, Electrochem. Solid State Lett. 6, G7 (2003)

    CAS  Google Scholar 

  21. J.N. Nian, H. Teng, J. Phys. Chem. B. 109, 10279 (2005)

    CAS  Google Scholar 

  22. C. Albert, A. Aragonès, A.F. Palacios-Padrós, F. Caballero-Briones, Sanz 2013 Electrochim. Acta. 109, 117 (2013)

    Google Scholar 

  23. D. Kang, D. Lee, S. Choi, Langmuir 32, 10459 (2016)

    CAS  Google Scholar 

  24. K.K. Kim, H.S. Kim, D.K. Hwang, J. Appl. Phys. Lett. 83, 63 (2003)

    CAS  Google Scholar 

  25. B.K. Sharma, N. Khare, J. Phys. D: Appl. Phys. 43, 465402 (2010)

    Google Scholar 

  26. A.S. Gonçalves, M.S. Goes, F. Fabregat-Santiago, T. Moehl, M.R. Davolos, J. Bisquert, S. Yanagida, A.F. Nogueira, P.R. Bueno, Doping saturation in dye-sensitized solar cells based on ZnO: Ga nanostructured photoanodes. Electrochim. Acta. 56, 6503 (2011)

    Google Scholar 

  27. D. Zeng, Z. Yang, S. Wang, X. Ni, D. Ai, Q. Zhang, Electrochim. Acta. 56, 4075 (2011)

    CAS  Google Scholar 

  28. Z.B. Bahşi, M.H. Aslan, M. Ozer, A.Y. Oral, Cryst. Res. Technol. 44, 961 (2009)

    Google Scholar 

  29. R. Dutta, N. Mandal, Appl. Phys. Lett 101, 042106 (2012)

    Google Scholar 

  30. L. Mentar, O. Baka, M.R. Khelladi, A. Azizi, S. Velumani, G. Schmerber, A. Dinia, J. Mater. Sci. Mater. Electron. 26, 1217 (2015)

    CAS  Google Scholar 

  31. D. Chu, S. Li, J. Glass Ceram+. 2, 13 (2012).

  32. L. Yuan-Chang, Ceram. Int. 38, 119–1241 (2012)

    Google Scholar 

  33. A.P. Bhirud, S.D. Sathaye, R.P. Waichal, L.K. Nikam, B.B. Kale, Green Chem. 14, 2790 (2012)

    CAS  Google Scholar 

  34. W. Li, S. Ma, G. Yang, Y. Mao, J. Luo, L. Cheng, D. Gengzang, X. Xu, S. Yan, Mater Lett. 138, 188 (2015)

    CAS  Google Scholar 

  35. F. Dongyu, Y. Pei, Li Huijun, Influence of annealing temperature on the structural and optical properties of Mg–Al co-doped ZnO thin films prepared via sol–gel method. Ceram. Int 40, 5873–5880 (2014)

    Google Scholar 

  36. O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L. Ono, B. Roldan Cuenya, H. Heinrich, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010)

    CAS  Google Scholar 

  37. X. Tian, Z. Pan, H. Zhang, H. Fan, X. Zeng, C. Xiao, G. Hu, Z. Wei, Ceram. Int. 39, 6497–6502 (2013)

    CAS  Google Scholar 

  38. Y.H. Liu, S.J. Young, L.W. Ji, T.H. Meen, C.H. Hsiao, C.S. Huang, S.J. Chang, IEEE Trans. Electron Devices. 61, 1541–1545 (2014)

    CAS  Google Scholar 

  39. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  40. G. Zheng, J. Song, J. Zhang, J. Li, B. Han, X. Meng, F. Yang, Y. Zhao, Y. Wang, Mater. Sci. Semicond. Process. 112, 105016 (2020)

    CAS  Google Scholar 

  41. J. Tauc, In optical properties of solids 22, in North Holland Pub. ed. by F. Abeles (Amsterdam, 1970)

    Google Scholar 

  42. G.G. Rusu, M. Gîrtan, M. Rusu, Superlattice. Microst. 42, 116 (2007)

    CAS  Google Scholar 

  43. E. Hammarberg, A.P. Schwab, C. Feldmann, J. Colloid. Interf. Sci. 334, 29 (2009)

    CAS  Google Scholar 

  44. C.G. Jin, T. Yu, Z.F. Wu, F. Wang, M.Z. Wu, Y.Y. Wang, Y.M. Yu, L.J. Zhuge, X. M. Wu Appl. Phys A. 106, 961 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

It is included in the PRFU of Ferhat Abbas-Sétif University No. B00L01UN190120200001. This study was funded by the Algerian General Directorate of Scientific Research and Technological Development (DGRSDT), MESRS.

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by AIB, HB, AG, AA. The first draft of the manuscript was written by AA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Azizi.

Ethics declarations

Conflict of interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose. All authors contributed to the study conception and design.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulahbal, A.I., Benathmane, H., Gil, A. et al. Functional properties of transparent Al, Mg-doped and Al-Mg co-doped ZnO nanostructures grown by electrochemical and chemical bath deposition: a comparative study. J Mater Sci: Mater Electron 34, 1283 (2023). https://doi.org/10.1007/s10854-023-10679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10679-1

Navigation