Skip to main content
Log in

Single step growth of vertical MoS2 thin films by chemical vapor deposition for hydrogen evolution reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of precursor ratio and sulfur-source to substrate distance on the growth of vertically aligned nanostructured (vertical) MoS2 thin films by single-step chemical vapor deposition technique is reported here. The growth parameters such as temperature, Mo:S ratio, growth time, and sulfur-source to substrate distance were varied systematically to obtain vertical MoS2 thin films. The density of vertical flakes was maximum at an optimum Mo:S ratio of 1:6 and sulfur-source to substrate distance of 4 cm. The formation of layered MoS2 thin films with densely packed vertical flakes of MoS2 nanostructures was further confirmed by Raman, PL, XRD, XPS, and TEM measurements. HER studies revealed an enhancement in electrocatalytic activity for the vertical MoS2 thin films compared with horizontally aligned nanostructured (horizontal) MoS2 thin films, making the former a potential candidate for HER catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data analysed during this study are available from the corresponding author on reasonable request.

References

  1. C. Stern, S. Grinvald, M. Kirshner, O. Sinai, M. Oksman, H. Alon, O.E. Meiron, M. Bar-Sadan, L. Houben, D. Naveh, Sci. Rep. 8, 1–7 (2018)

    Article  CAS  Google Scholar 

  2. T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Energy. Environ. Sci. 7, 209–231 (2014)

    CAS  Google Scholar 

  3. Tianyi Wang, Shuangqiang Chen, Huan Pang, Huaiguo Xue, Yu. Yan, Adv. Sci. 4(2), 1600289 (2017)

    Article  Google Scholar 

  4. Sha Li, Shanshan Wang, Matteo M. Salamone, Alex W. Robertson, Simantini Nayak, Heeyeon Kim, SC Edman. Tsang, Mauro Pasta, Jamie H. Warner, ACS Catal. 7(1), 877–886 (2017)

    Article  CAS  Google Scholar 

  5. N. Shaikh, I. Mukhopadhyay, A. Ray, J. Mater. Res. 37(11), 1892–1903 (2022)

    Article  CAS  Google Scholar 

  6. F. Yang, H. Huang, J. Zhu, W. Dong, Wu. Qiqi, H. Li, J. Mater. Sci. Mater. Electron. 33, 14691–14701 (2022)

    Article  CAS  Google Scholar 

  7. Y.P. Venkata Subbaiah, K.J.A. Saji Tiwari, Adv. Funct. Mater. 26(11), 2046–2069 (2016)

    Article  CAS  Google Scholar 

  8. J.R. Brent, N. Savjani, P. O’Brien, Prog. Mater. Sci. 89, 411–478 (2017)

    Article  CAS  Google Scholar 

  9. Matin Amani, Matthew L. Chin, A Glen Birdwell, Terrance P. O’Regan, Sina Najmaei, Zheng Liu, Pulickel M. Ajayan, Jun Lou, Madan Dubey, Appl. Phys. Lett. 102, 193107 (2013)

    Article  Google Scholar 

  10. D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Yi. Cui, Nano Lett. 13(3), 1341–1347 (2013)

    Article  CAS  Google Scholar 

  11. D.H. Baek, J. Kim, Sens. Actuators B 250, 686–691 (2017)

    Article  CAS  Google Scholar 

  12. M. Barzegar, A. Iraji zad, A. Tiwari, Vacuum 167, 90–97 (2019)

    Article  CAS  Google Scholar 

  13. X. Zhang, S. Zhang, B. Chen, H. Wang, Wu. Kan, Y. Chen, J. Fan, S. Qi, X. Cui, L. Zhanga, J. Wang, Nanoscale 8, 431–439 (2016)

    Article  CAS  Google Scholar 

  14. M.H. Johari, M.S. Sirat, M.A. Mohamed, S.N.F. Mohd Nasir, M.A. Mat Teridi, A.R. Mohmad, Nanotechnology 31(30), 305710 (2020)

    Article  CAS  Google Scholar 

  15. Dumitru Dumcenco, Dmitry Ovchinnikov, Oriol Lopez Sanchez, Philippe Gillet, Duncan TL. Alexander, Sorin Lazar, Aleksandra Radenovic, Andras Kis, 2D Mater. 2, 044005 (2015)

    Article  Google Scholar 

  16. S. Ganorkar, J. Kim, Y.-H. Kim, S.-I.I. Kim, J. Phys. Chem. Solid 87, 32–37 (2015)

    Article  CAS  Google Scholar 

  17. Antal A. Koós, Péter. Vancsó, Márton. Szendrő, Gergely Dobrik, David Antognini Silva, Zakhar I. Popov, Pavel B. Sorokin, Luc Henrard, Chanyong Hwang, László. P. Biró, Levente Tapasztó, J. Phys. Chem. C 123(40), 24855–24864 (2019)

    Article  Google Scholar 

  18. B. Kıvrak, M. Akyol, A. Ekicibil, J. Mater. Sci. Mater. Electron. 33, 16574–16585 (2022)

    Article  Google Scholar 

  19. C. Nie, L-Y. Yu, C. Du, B. Bo, S. Feng, DEStech Trans. Mater. Sci. Eng. (2017). https://doi.org/10.12783/DTMSE/ICMSEA/MCE2017/10789

    Article  Google Scholar 

  20. G. Deokar, N.S. Rajput, P. Vancsó, F. Ravaux, M. Jouiad, D. Vignaud, F. Cecchet, J.-F. Colomera, Nanoscale 9(1), 277–287 (2017)

    Article  CAS  Google Scholar 

  21. D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Feia, Wu. Zhuangzhi, J. Mater. Chem. A 5(6), 2681–2688 (2017)

    Article  CAS  Google Scholar 

  22. Kyung Yong Ko, Jeong-Gyu. Song, Youngjun Kim, Taejin Choi, Sera Shin, Chang Wan Lee, Kyounghoon Lee, Jahyun Koo, Hoonkyung Lee, Jongbaeg Kim, Taeyoon Lee, Jusang Park, Hyungjun Kim, ACS Nano 10(10), 9287–9296 (2016)

    Article  CAS  Google Scholar 

  23. M. Barzegar, M. Berahman, A.I. Zad, Beilstein J. Nanotechnol. 9, 608–615 (2018)

    Article  CAS  Google Scholar 

  24. R. Kumar, N. Goel, M. Kumar, Appl. Phys. Lett. 112(5), 053502 (2018)

    Article  Google Scholar 

  25. S.B. Saseendran, A. Ashok, A.S. Asha, Int. J. Hydrogen Energy 47(16), 9579–9592 (2022)

    Article  CAS  Google Scholar 

  26. B. Rahmati, I. Hajzadeh, R. Karimzadeh, S.M. Mohseni, Appl. Surf. Sci. 455, 876–882 (2018)

    Article  CAS  Google Scholar 

  27. H. Liu, Y. Zhu, Q. Meng, Lu. Xiaowei, S. Kong, Z. Huang, P. Jiang, X. Bao, Nano Res. 10(2), 643–651 (2017)

    Article  CAS  Google Scholar 

  28. Z. Zhu, S. Zhan, J. Zhang, G. Jiang, M. Yi, J. Wen, Mater. Res. Express 6, 095011 (2019)

    Article  CAS  Google Scholar 

  29. F. Chen, W. Su, CrystEngComm 20(33), 4823–4830 (2018)

    Article  CAS  Google Scholar 

  30. L. Yang, X. Yuan, R. Liu, Wu. Ping, Yu. Zhong, F. Zhu, W. Chang, J. Mater. Sci. Mater. Electron. 33(30), 1–7 (2022)

    Article  Google Scholar 

  31. K. Ponnusamy, S. Durairaj, S. Chandramohan, J. Mater. Sci. Mater. Electron. 33, 9549–9557 (2022)

    Article  CAS  Google Scholar 

  32. F. Chen, X. Jiang, J. Shao, Lu. Bin, Fu. Li, S. Zhaoa, Su. Weitao, CrystEngComm 23, 1345–1351 (2021)

    Article  CAS  Google Scholar 

  33. S. B. Saseendran, T. Thomas, M. K. Jayaraj, A. A. Sukumaran, 2020 5th IEEE international conference on emerging electronics (ICEE), 1–4 (2020).

  34. G. Plechinger, J. Mann, E. Preciado, D. Barroso, A. Nguyen, J. Eroms, C. Schueller, L. Bartels, T. Korn, Semicond. Sci Tech. 29(6), 064008 (2014)

    Article  CAS  Google Scholar 

  35. L. Ye, H. Xu, D. Zhang, S. Chen, Mater. Res. Bull. 55, 221–228 (2014)

    Article  CAS  Google Scholar 

  36. Gene Siegel, YP Venkata. Subbaiah, Megan C. Prestgard, Ashutosh Tiwari, APL Mater. 3(5), 056103 (2015)

    Article  Google Scholar 

  37. N. Scheuschner, R. Gillen, M. Staiger, J. Maultzsch, Phys. Rev. B 91(23), 1–10 (2015)

    Article  Google Scholar 

  38. Hong Li, Qing Zhang, Chin Chong Ray. Yap, Beng Kang Tay, Teo Hang Tong. Edwin, Aurelien Olivier, Dominique Baillargeat, Adv. Funct. Mater. 22(7), 1385–1390 (2012)

    Article  CAS  Google Scholar 

  39. M. Ye, D. Winslow, D. Zhang, R. Pandey, Yoke Khin Yap, Photonics 2(1), 288–307 (2015)

    Article  CAS  Google Scholar 

  40. Y. Jung, J. Shen, Y. Liu, J.M. Woods, Y. Sun, J.J. Cha, Nano Lett. 14(12), 6842–6849 (2014)

    Article  CAS  Google Scholar 

  41. G. Yang, Gu. Yan, P. Yan, J. Wang, J. Xue, X. Zhang, Lu. Naiyan, G. Chen, ACS Appl. Mater. Interfaces 11(8), 8453–8460 (2019)

    Article  CAS  Google Scholar 

  42. Xiao Lin Li, Ya Dong Li, Chem. Eur. J. 9(12), 2726–2731 (2003)

    Article  CAS  Google Scholar 

  43. S. Wang, Y. Rong, Ye. Fan, M. Pacios, H. Bhaskaran, K. He, J.H. Warner, Chem. Mater. 26(22), 6371–6379 (2014)

    Article  CAS  Google Scholar 

  44. M. Bosi, RSC Adv. 5, 75500–75518 (2015)

    Article  CAS  Google Scholar 

  45. Hu. Wen-Hui, G.-Q. Han, F.-N. Dai, Y.-R. Liu, X. Shang, B. Dong, Y.-M. Chai, Y.-Q. Liu, C.-G. Liu, Int. J. Hydrogen Energy 41(1), 294–299 (2016)

    Article  Google Scholar 

  46. Linfeng Fei, Shuijin Lei, Wei-Bing. Zhang, Lu. Wei, Ziyuan Lin, Chi Hang Lam, Yang Chai, Yu. Wang, Nat. Commun. 7, 1–7 (2016)

    Google Scholar 

  47. Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Small 8, 966–971 (2012)

    Article  CAS  Google Scholar 

  48. X. Wang, Y.P. Zhang, Z.Q. Chen, Mater. Res. Express 3(6), 1–7 (2016)

    Article  Google Scholar 

  49. A.P. Sunitha, P. Praveen, M.K. Jayaraj, K.J. Saji, Opt. Mater. (Amst) 85, 61–70 (2018)

    Article  CAS  Google Scholar 

  50. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10(4), 1271–1275 (2010)

    Article  CAS  Google Scholar 

  51. W. Dong, H. Liu, X. Liu, H. Wang, X. Li, L. Tian, Int. J. Hydrogen Energy 46(14), 9360–9370 (2021)

    Article  CAS  Google Scholar 

  52. Youngchan Kim, Hunyoung Bark, Gyeong Hee Ryu, Zonghoon Lee, Changgu Lee, J. Phys. Condens. Matter. 28(18), 184002 (2016)

    Article  Google Scholar 

  53. S. Huang, Z. You, Y. Jiang, F. Zhang, K. Liu, Y. Liu, X. Chen, Y. Lv, Processes 8(5), 1–17 (2020)

    Google Scholar 

  54. D. Xiang, C. Han, J. Zhang, W. Chen, Sci. Rep. 4, 1–6 (2015)

    Google Scholar 

  55. Haidong Liu, Hu. Huating, Jun Wang, Philip Niehoff, Xin He, Elie Paillard, Dominik Eder, Martin Winter, L. Jie, ChemElectroChem 3, 922–932 (2016)

    Article  CAS  Google Scholar 

  56. H. Li, Wu. Huaqiang, S. Yuan, He. Qian, Sci. Rep. 6, 21171 (2016)

    Article  CAS  Google Scholar 

  57. S.-L. Shang, G. Lindwall, Yi. Wang, J.M. Redwing, T. Anderson, Z.-K. Liu, Nano Lett. 16(2), 5742–5750 (2016)

    Article  CAS  Google Scholar 

  58. Ziyuan Lin, Yuda Zhao, Changjian Zhou, Ren Zhong, Xinsheng Wang, Yuen Hong Tsang, Yang Chai, Sci. Rep. 5, 18596 (2016)

    Article  Google Scholar 

  59. W. Li, X. Wang, D. Xiong, L. Liu, Int. J. Hydrogen Energy 41(22), 9344–9354 (2016)

    Article  CAS  Google Scholar 

  60. Dong Chung, Seung-Keun. Park, Young-Hoon. Chung, Yu. Seung-Ho, Dong-Hee. Lim, Namgee Jung, Hyung Chul Ham, Hee-Young. Park, Yuanzhe Piao, Sung Jong Yoo, Yung-Eun. Sung, Nanoscale 6(4), 2131–2136 (2014)

    Article  CAS  Google Scholar 

  61. H. Van Ngoc, Y. Qian, S.K. Han, D.J. Kang, Sci. Rep. 6, 1–9 (2016)

    Article  Google Scholar 

  62. L. Yang, P. Liu, J. Li, B. Xiang, Catalysts 7(10), 285–303 (2017)

    Article  Google Scholar 

  63. M.R. Gao, M.K.Y. Chan, Y. Sun, Nat. Commun. 6(7493), 1–8 (2015)

    Google Scholar 

  64. Xu. Yuzi, L. Wang, X. Liu, S. Zhang, C. Liu, D. Yan, Y. Zeng, Y. Pei, Y. Liu, S. Luo, J. Mater. Chem. A. 4, 16524–16530 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Author SBS acknowledges CSIR for research fellowship. The authors also thank DST-FIST for the FESEM facility installed at the Department of Physics, CUSAT, STIC CUSAT for TEM and NIIST Thiruvananthapuram for XPS analysis.

Author information

Authors and Affiliations

Authors

Contributions

SBS: Methodology, Investigation, Data curation, Writing—original draft. AA: Data curation. MKJ: Supervision RR: Writing—review and editing. AAS: Conceptualization, Supervision, Data curation, Writing—review and editing.

Corresponding author

Correspondence to A. S. Asha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1111 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saseendran, S.B., Ashok, A., Jayaraj, M.K. et al. Single step growth of vertical MoS2 thin films by chemical vapor deposition for hydrogen evolution reaction. J Mater Sci: Mater Electron 34, 1233 (2023). https://doi.org/10.1007/s10854-023-10677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10677-3

Navigation