Skip to main content
Log in

Phase components, microstructures, and magnetic properties of liquid-phase-sintered Li0.4Zn0.2Fe2.4O4/Y3Fe5O12 ferrite nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li0.4Zn0.2Fe2.4O4/Y3Fe5O12-BBSZ (LiZn/YIG-BBSZ) ferrite-glass nanocomposites have been fabricated using a low-temperature liquid phase sintering process. According to the XRD results, a clear signature of phase separation of Li0.4Zn0.2Fe2.4O4 (LiZn) ferrite and Y3Fe5O12 (YIG) ferrite with a small amount of YFeO3 is present. The LiZn/YIG-BBSZ exhibits a dense granular structure with a porosity of 1.11% and a low average grain size of ~ 1.3 µm. Compared to the Li0.4Zn0.2Fe2.4O4-BBSZ (LiZn-BBSZ) or the Y3Fe5O12-BBSZ (YIG-BBSZ) composites, the LiZn/YIG-BBSZ possesses a relatively high saturation magnetization of ~ 46.4 emu/g and a relatively low coercivity of ~ 57.2 Oe mainly due to its optimized porosity and grain size. Owing to the increase in intrinsic and extrinsic damping and the dynamic magnetic inhomogeneity, high ferromagnetic resonance (FMR) linewidth of ~ 1018.4 Oe has been achieved for the LiZn/YIG-BBSZ, which is much larger than that of the LiZn-BBSZ or the YIG-BBSZ. The enlarged FMR linewidth and tunable saturation magnetization of the ferrite-glass nanocomposites may show promise for the electromagnetic shielding or microwave absorbers design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H.J. Kwon, J.Y. Shin, J.H. Oh, The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers. J. Appl. Phys. 75, 6109 (1994)

    Article  CAS  Google Scholar 

  2. A. Houbi, Z.A. Aldashevich, Y. Atassi, Z.B. Telmanovna, M. Saule, K. Kubanych, Microwave absorbing properties of ferrites and their composites: A review. J. Magn. Magn. Mater. 529, 167839 (2021)

    Article  CAS  Google Scholar 

  3. S. Vinayasree, M. Soloman, V. Sunny, P. Mohanan, P. Kurian, M. Anantharaman, A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications. Compos. Sci. Technol. 82, 69–75 (2013)

    Article  CAS  Google Scholar 

  4. K. Praveena, G.V. Jagadeesha Gowda, A. El-Denglawey, V. Jagadeesha Angadi, Manganese ferrite—polyaniline nanocomposites for microwave absorbers in X band. J. Mater. Sci.: Mater. Electron. 33, 5678–5685 (2022)

    CAS  Google Scholar 

  5. L. Wang, Y. Guan, X. Qiu, H. Zhu, S. Pan, M. Yu, Q. Zhang, Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework. Chem. Eng. J. 326, 945–955 (2017)

    Article  CAS  Google Scholar 

  6. P.D. Baba, G.M. Argentina, W.E. Courtney, G.F. Dionne, D.H. Temme, Fabrication and properties of microwave lithium ferrites. IEEE Trans. Magn. 8, 83–94 (1972)

    Article  CAS  Google Scholar 

  7. K.D. Martinson, I.B. Panteleev, K.A. Steshenko, V.I. Popkov, Effect of Bi2O3 contents on magnetic and electromagnetic properties of LiZnMn ferrite ceramics. J. Eur. Ceram. Soc. 42, 3463–3472 (2022)

    Article  CAS  Google Scholar 

  8. V.G. Harris, Modern microwave ferrites. IEEE Trans. Magn. 48, 1075–1104 (2012)

    Article  CAS  Google Scholar 

  9. R.C. Pullar, Review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  CAS  Google Scholar 

  10. S. Borah, N.S. Bhattacharyya, Broadband magneto-dielectric response of particulate ferrite polymer composite at microwave frequencies. Composite B 43, 1988–1994 (2012)

    Article  CAS  Google Scholar 

  11. T. Wang, Z. Zhou, Zhong, Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties. J. Mater. Sci. Technol. 99, 1–8 (2022)

    Article  Google Scholar 

  12. H. Su, H. Zhang, X. Tang, Effects of Bi2O3–WO3 additives on sintering behaviors and magnetic properties of NiCuZn ferrites. Mater. Sci. Eng. B 117, 231–234 (2005)

    Article  Google Scholar 

  13. Q. Yang, H. Zhang, Y. Liu, Q. Wen, Microstructure and magnetic properties of microwave sintered M-type barium ferrite for application in LTCC devices. Mater. Lett. 63, 406–408 (2009)

    Article  CAS  Google Scholar 

  14. J.L. Ortiz-Quiñonez, S. Das, U. Pal, Catalytic and pseudocapacitive energy storage performance of metal (Co, Ni, Cu and Mn) ferrite nanostructures and nanocomposites. Prog. Mater. Sci. 130, 100995 (2022)

    Article  Google Scholar 

  15. H. Jalili, B. Aslibeiki, A. Hajalilou, O. Musalu, L.P. Ferreira, M.M. Cruz, Bimagnetic hard/soft and soft/hard ferrite nanocomposites: Structural, magnetic and hyperthermia properties. Ceram. Int. 48, 4886–4896 (2022)

    Article  CAS  Google Scholar 

  16. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, AYu. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. J. Mater. Chem. C 9, 5425–5436 (2021)

    Article  CAS  Google Scholar 

  17. A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, A.Y. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, M. Zdorovets, Influence of the charge ordering and quantum effects in heterovalent substituted hexaferritesontheirmicrowavecharacteristics. J. Alloys Compd. 788, 1193–1202 (2019)

    Article  CAS  Google Scholar 

  18. B. Hu, Z. Chen, Z. Su, X. Wang, A. Daigle, P. Andalib, J. Wolf, M.E. McHenry, Y. Chen, V.G. Harris, Nanoscale-driven crystal growth of hexaferrite heterostructures for magnetoelectric tuning of microwave semiconductor integrated devices. ACS Nano 8, 11172–11180 (2014)

    Article  CAS  Google Scholar 

  19. S. Sutradhar, S. Pati, S. Acharya, S. Das, D. Das, P.K. Chakrabarti, Sol–gel derived nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4): magnetic and Mössbauer effect measurements and their theoretical analysis. J. Magn. Magn. Mater. 324, 1317–1325 (2012)

    Article  CAS  Google Scholar 

  20. X.N. Jiang, Z.W. Lan, Z. Yu, P.Y. Liu, D.Z. Chen, C.Y. Liu, Sintering characteristics of LiZn ferrites fabricated by a sol–gel process. J. Magn. Magn. Mater. 321, 52–55 (2009)

    Article  CAS  Google Scholar 

  21. Y. Gao, Z. Wang, Microwave absorption and electromagnetic interference shielding properties of Li-Zn ferrite-carbon nanotubes composite. J. Magn. Magn. Mater. 528, 167808 (2021)

    Article  CAS  Google Scholar 

  22. P. Liu, L. Li, Z. Yao, J. Zhou, M. Du, T. Yao, Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites. J. Mater. Sci.: Mater. Electron. 27, 7776–7787 (2016)

    CAS  Google Scholar 

  23. P.V.B. Reddy, V.R. Reddy, A. Gupta, R. Gopalan, C.G. Reddy, Mössbauer study of nano-crystalline Li–Zn ferrites. Hyperfine Interact. 183, 81–86 (2008)

    Article  CAS  Google Scholar 

  24. Y.S. Cho, V.L. Burdick, V.R.W. Amarakoon, Synthesis of nanocrystalline lithium zinc ferrites using polyacrylic acid, and their initial densification. J. Am. Ceram. Soc. 82, 1416–1420 (1999)

    Article  CAS  Google Scholar 

  25. X.M. Liu, S.Y. Fu, H.M. Xiao, C. Huang, Synthesis of nanocrystalline spinel CoFe2O4 via a polymer-pyrolysis route. Physica B 370, 14–21 (2005)

    Article  CAS  Google Scholar 

  26. Y. Lin, X. Liu, T. Ye, H. Yang, F. Wang, C. Liu, Synthesis and characterization of CoFe2O4 /Y3Fe5O12 composites based on polyaniline. J. Mater. Sci.: Mater. Electron. 27, 4833–4838 (2016)

    CAS  Google Scholar 

  27. X. Cai, H. Guo, H. Zhu, D. Yin, H. Guo, D. Bi, K. Yu, H. Yang, J. Pan, Effect of cooling medium on the preparation and microwave absorption properties in low frequency for LiZn ferrites hollow microspheres. J. Alloys Compd. 906, 164290 (2022)

    Article  CAS  Google Scholar 

  28. R. Yao, S. Liao, X. Chen, G. Tang, G. Wang, F. Zheng, Effects of ZnO and NiO on material properties of microwave absorptive glass-ceramic tile derived from iron ore tailings. Ceram. Int. 42, 8179–8189 (2016)

    Article  CAS  Google Scholar 

  29. A.V. Anupama, V. Kumaran, B. Sahoo, Magnetorheological fluids containing rod-shaped lithium–zinc ferrite particles: the steady-state shear response. Soft Matter 14, 5407–5419 (2018)

    Article  CAS  Google Scholar 

  30. V. Rathod, A.V. Anupama, V.M. Jali, V.A. Hiremath, B. Sahoo, Combustion synthesis, structure and magnetic properties of Li–Zn ferrite ceramic powders. Ceram. Int. 43, 14431–14440 (2017)

    Article  CAS  Google Scholar 

  31. K. Sun, Z. Zhang, R. Fan, M. Chen, C. Cheng, Q. Hou, X. Zhang, Y. Liu, Random copper/yttrium iron garnet composites with tunable negative electromagnetic parameters prepared by in situ synthesis. RSC Adv. 5, 61155–61160 (2015)

    Article  CAS  Google Scholar 

  32. C. Cheng, Y. Liu, R. Ma, R. Fan, Nickel/yttrium iron garnet metacomposites with adjustable negative permittivity behavior toward electromagnetic shielding application. Composite A 155, 106842 (2022)

    Article  CAS  Google Scholar 

  33. T. Zhou, H. Zhang, L. Jia, J. Li, Y. Liao, L. Jin, H. Su, Grain growth, densification, and gyromagnetic properties of LiZnTi ferrites with H3BO3-Bi2O3-SiO2-ZnO glass addition. J. Appl. Phys. 115, 17A511 (2014)

    Article  Google Scholar 

  34. T. Zhou, D. Zhang, L. Jia, F. Bai, J. Jin, Y. Liao, T. Wen, C. Liu, H. Su, N. Jia, Z. Zheng, V.G. Harris, H. Zhang, Z. Zhong, Effect of NiZn ferrite nanoparticles upon the structure and magnetic and gyromagnetic properties of low-temperature processed LiZnTi ferrites. J. Phys. Chem. C 119, 13207–13214 (2015)

    Article  CAS  Google Scholar 

  35. Z. Yue, J. Zhou, X. Wang, Z. Gui, L. Li, Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol-gel auto-combustion process. J. Eur. Ceram. Soc. 23, 189–193 (2003)

    Article  CAS  Google Scholar 

  36. M.N. Akhtar, M.A. Khan, M. Ahmad, G. Murtaza, R. Raza, S.F. Shaukat, M.H. Asif, N. Nasir, G. Abbas, M.S. Nazir, M.R. Raza, Y3Fe5O12 nanoparticulate garnet ferrites: Comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393–400 (2014)

    Article  Google Scholar 

  37. B. Raneesh, H. Soumya, J. Philip, S. Thomas, K. Nandakumar, Magnetoelectric properties of multiferroic composites (1–x)ErMnO3xY3Fe5O12 at room temperature. J. Alloys Compd. 611, 381–385 (2014)

    Article  CAS  Google Scholar 

  38. R. Abbas, K.D. Martinson, T.Y. Kiseleva, G.P. Markov, P.Y. Tyapki, V.I. Popkov, Effect of fuel type on the solution combustion synthesis, structure, and magnetic properties of YIG nanocrystals. Mater. Today Commun. 32, 103866 (2022)

    Article  CAS  Google Scholar 

  39. P. Vaqueiro, M.A. López-Quintela, Influence of complexing agents and pH on yttrium-iron garnet synthesized by the sol-gel method. Chem. Mater. 9, 2836–2841 (1997)

    Article  CAS  Google Scholar 

  40. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  41. M. Kavanloui, B. Hashemi, Effect of B2O3 on the densification and magnetic properties of Li–Zn ferrite. Mater. Des. 32, 4257–4261 (2011)

    Article  CAS  Google Scholar 

  42. A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Pittsburgh, 2009)

    Google Scholar 

  43. V. Sharma, S. Kumari, B.K. Kuanr, Exchange-coupled hard-soft ferrites; a new microwave material. J. Alloys Compd. 736, 266–275 (2018)

    Article  CAS  Google Scholar 

  44. J.B. Youssef, C. Brosseau, Magnetization damping in two-component metal oxide micropowder and nanopowder compacts by broadband ferromagnetic resonance measurements. Phys. Rev. B 74, 214413 (2006)

    Article  Google Scholar 

  45. R.S. Azis, M.M. Syazwan, N.M.M. Shahrani, A.N. Hapishah, R. Nazlan, F.M. Idris, I. Ismail, M.M.M. Zulkimi, I.R. Ibrahim, Z. Abbas, N.M. Saiden, Influence of sintering temperature on the structural, electrical and microwave properties of yttrium iron garnet (YIG). J. Mater. Sci.: Mater. Electron. 29, 8390–8401 (2018)

    CAS  Google Scholar 

  46. D. Zhang, L. Jin, H. Zhang, Q. Yang, Y. Rao, Q. Wen, T. Zhou, C. Liu, Z. Zhong, J.Q. Xiao, Chemical epitaxial growth of nm-thick yttrium iron garnet films with low Gilbert damping. J. Alloys Compd. 695, 2301–2305 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant No. 62171096) and the Sichuan Science and Technology Support Project (Grant No. 2021YFG0091).

Funding

National Natural Science Foundation of China, 62171096, Lichuan Jin, Sichuan Science and Technology Support Project, 2021YFG0091, Lichuan Jin.

Author information

Authors and Affiliations

Authors

Contributions

YG: Experiments, investigation, and writing—original draft. LJ: Discussion, resources, review & editing. YL: Discussion, review & editing. TZ: Supervision, analysis, writing—review & editing.

Corresponding author

Correspondence to Tingchuan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

The authors declare that this manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Jin, L., Liang, Y. et al. Phase components, microstructures, and magnetic properties of liquid-phase-sintered Li0.4Zn0.2Fe2.4O4/Y3Fe5O12 ferrite nanocomposites. J Mater Sci: Mater Electron 34, 1250 (2023). https://doi.org/10.1007/s10854-023-10656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10656-8

Navigation