Skip to main content
Log in

Effective and highly sunlight response g-C3N4/CuS heterojunction photocatalyst for the degradation of tetracycline antibiotic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A wet impregnation technique was utilized to synthesize g-C3N4/CuS heterojunction. The crystalline structure, functional groups, morphology, elemental configuration, optical absorption characteristics, electron hole recombination and charge transfer property of the prepared materials were analyzed through Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), High resolution scanning electron microscopy (HR-SEM), X-ray photoelectron spectroscopy (XPS), Diffused reflectance spectroscopy (UV–vis DRS), Photoluminescence (PL) and Electrochemical impedance spectroscopy (EIS) were investigated in detail. The specific surface area and pore volume of the prepared materials were characterized by N2 adsorption–desorption isotherms and BET analysis. Photocatalytic performance of tetracycline (TC) on direct sunlight radiance was assessed. Also, the calculated photocatalytic degradation effect of TC over binary photocatalyst was estimated as 91.7% at 60 min which is 4.28 and 3.89 times superior to g-C3N4 and CuS correspondingly. The \({h}^{+}\) and \({}^{ \cdot }O_{2}^{ - }\) radicals play a crucial role compared to \({}^{ \cdot }{\text{OH}}\) radical. The g-C3N4/CuS heterojunction performed as outstanding photocatalytic stability even after five cycles and has good chemical property. The formation of intermediate products during the degradation of TC was identified by GC–MS and conceivable degradation mechanism of tetracycline (TC) by g-C3N4/CuS heterojunction was also discussed. Finally, these results designated that the synthesized g-C3N4/CuS exhibits as a potential material for degradation of TC under sunlight irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. T. Tang, Z. Yin, J. Chen, S. Zhang, W. Sheng, W. Wei, Y. Xiao, Q. Shi, S. Cao, Novel p-n heterojunction Bi2O3/Ti3+-TiO2 photocatalyst enables the complete removal of tetracyclines under visible light. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.128058

    Article  Google Scholar 

  2. T. Lu, Y. Gao, Y. Yang, H. Ming, Z. Huang, G. Liu, D. Zheng, J. Zhang, Y. Hou, Efficient degradation of tetracycline hydrochloride by photocatalytic ozonation over Bi2WO6. Chemosphere 283, 131256 (2021). https://doi.org/10.1016/j.chemosphere.2021.131256

    Article  CAS  Google Scholar 

  3. Y. Liu, J. Tian, L. Wei, Q. Wang, C. Wang, Z. Xing, X. Li, W. Yang, C. Yang, Modified g-C3N4/TiO2/CdS ternary heterojunction nanocomposite as highly visible light active photocatalyst originated from CdS as the electron source of TiO2 to accelerate Z-type heterojunction. Sep. Purif. Technol (2021). https://doi.org/10.1016/j.seppur.2020.117976

    Article  Google Scholar 

  4. J. Shi, M. Tai, J. Hou, Y. Qiao, C. Liu, T. Zhou, L. Wang, B. Hu, Intramolecular D-A structure and n-π* transition co-promoted photodegradation activity of carbon nitride: performance, mechanism and toxicity insight. Chem. Eng. J. 456, 141029 (2023). https://doi.org/10.1016/j.cej.2022.141029

    Article  CAS  Google Scholar 

  5. Y. Dai, M. Liu, J. Li, S. Yang, Y. Sun, Q. Sun, W. Wang, L. Lu, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Z. Liu, A review on pollution situation and treatment methods of tetracycline in groundwater. Sep. Sci. Technol. 55(5), 1005–1021 (2020). https://doi.org/10.1080/01496395.2019.1577445

    Article  CAS  Google Scholar 

  6. X. Chen, X. Xue, X. Gong, A Novel Z-scheme Photocatalyst Porous g-C3N4 Nanosheet/Ag3PO4 Decorated with N-doped CDs for High Efficiency Removal of Antibiotic†. Dalton Trans. 49(16), 5205–5218 (2020). https://doi.org/10.1039/D0DT00408A

    Article  CAS  Google Scholar 

  7. C. Prasad, H. Tang, Q. Liu, I. Bahadur, S. Karlapudi, Y. Jiang, A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. Int. J. Hydrog. Energy. 45(1), 337–379 (2020). https://doi.org/10.1016/j.ijhydene.2019.07.070

    Article  CAS  Google Scholar 

  8. H. Yu, F. Chen, F. Chen, X. Wang, In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity. Appl. Surf. Sci. 358, 385–392 (2015). https://doi.org/10.1016/j.apsusc.2015.06.074

    Article  CAS  Google Scholar 

  9. H.Y. Hafeez, S.K. Lakhera, S. Bellamkonda, G.R. Rao, M.V. Shankar, D.W. Bahnemann, B. Neppolian, Construction of ternary hybrid layered reduced graphene oxide supported g-C3N4-TiO2 nanocomposite and its photocatalytic hydrogen production activity. Int. J. Hydrog. Energy. 43(8), 3892–3904 (2018). https://doi.org/10.1016/j.ijhydene.2017.09.048

    Article  CAS  Google Scholar 

  10. S. Iqbal, N. Ahmad, M. Javed, M.A. Qamar, A. Bahadur, S. Ali, Z. Ahmad, R.M. Irfan, G. Liu, M.B. Akbar, M.A. Qayyum, Designing highly potential photocatalytic comprising silver deposited ZnO NPs with sulfurized graphitic carbon nitride (Ag/ZnO/S-g-C3N4) ternary composite. J. Environ. Chem. Eng. 9, 104919 (2021). https://doi.org/10.1016/j.jece.2020.104919

    Article  CAS  Google Scholar 

  11. J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in suit synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A. 1(9), 3083–3090 (2013). https://doi.org/10.1039/C2TA00672C

    Article  CAS  Google Scholar 

  12. T. Zhou, J. Shi, G. Li, B. Liu, B. Hu, G. Che, C. Liu, L. Wang, L. Yan, Advancing n-p* electron transition of carbon nitride via distorted structure and nitrogen heterocycle for efficient photodegradation: performance, mechanism and toxicity insight. J Colloid Interface Sci. 632, 285–298 (2023). https://doi.org/10.1016/j.jcis.2022.11.073

    Article  CAS  Google Scholar 

  13. X. Chen, H. Li, Y. Wu, H. Wu, L. Wu, P. Tan, J. Pan, X. Xiong, Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance. J. Colloid Interface Sci. 476, 132–143 (2016). https://doi.org/10.1016/j.jcis.2016.05.024

    Article  CAS  Google Scholar 

  14. G. Li, B. Wang, J. Zhang, R. Wang, H. Liu, Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline. Appl. Surf. Sci. 478, 1056–1064 (2019). https://doi.org/10.1016/j.jcis.2019.08.077

    Article  CAS  Google Scholar 

  15. Y. Liang, W. Xu, J. Fang, Z. Liu, D. Chen, T. Pan, Y. Yu, Z. Fang, Highly dispersed bismuth oxide quantum dots/graphite carbon nitride nanosheets heterojunctions for visible light photocatalytic redox degradation of environmental pollutants. Appl. Catal. B-Environ. 295, 120279 (2021). https://doi.org/10.1016/j.apcatb.2021.120279

    Article  CAS  Google Scholar 

  16. N.L.M. Tri, J. Kim, B.L. Giang, T.M. Al Tahtamounif, P.T. Huong, C. Lee, N.M. Viet, D.Q. Trung, Ag-doped graphitic carbon nitride photocatalyst with remarkably enhanced photocatalytic activity towards antibiotic in hospital wastewater under solar light. J Ind Eng Chem 80, 597–605 (2019). https://doi.org/10.1016/j.jiec.2019.08.037

    Article  CAS  Google Scholar 

  17. Y. Ma, J. Zhang, Y. Wang, Q. Chen, Z. Feng, T. Sun, Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions. J. Adv. Res. 16, 135–143 (2019). https://doi.org/10.1016/j.jare.2018.10.003

    Article  CAS  Google Scholar 

  18. T. Chen, C. Song, M. Fan, Y. Hong, B. Hu, L. Yu, W. Shi, In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer. Int. J. Hydrog. Energy 42, 12210–12219 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.188

    Article  CAS  Google Scholar 

  19. S. Shenoy, K. Tarafder, K. Sridharan, Graphitic C3N4/CdS composite photocatalyst: Synthesis, characterization and photodegradation of methylene blue under visible light. Physica B 595, 412367 (2020). https://doi.org/10.1016/j.physb.2020.412367

    Article  CAS  Google Scholar 

  20. Y. Hou, G. Yuan, S. Wang, Z. Yu, S. Qin, L. Tu, Y. Yan, X. Chen, H. Zhu, Y. Tang, Nitrofurazone degradation in the self-biased bio-photoelectrochemical system: g-C3N4/CdS photocathode characterization, degradation performance, mechanism and pathways. J. Hazard. Mater. 384, 121438 (2020). https://doi.org/10.1016/j.jhazmat.2019.121438

    Article  CAS  Google Scholar 

  21. Y. Sun, J. Jiang, Y. Cao, Y. Liu, S. Wu, J. Zou, Facile fabrication of g-C3N4/ZnS/CuS heterojunctions with enhanced photocatalytic performances and photoconduction. Mater. Lett. 212, 288–291 (2018). https://doi.org/10.1016/j.matlet.2017.10.111

    Article  CAS  Google Scholar 

  22. Y. Wang, X. Zhang, Y. Liu, Y. Zhao, C. Xie, Y. Song, P. Yang, Crystallinity and phase controlling of g-C3N4/CdS hetrostructures towards high efficient photocatalytic H2 generation. Int. J. Hydrog. Energy. 44, 30151–30159 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.181

    Article  CAS  Google Scholar 

  23. W. Shi, S. Yang, H. Sun, J. Wang, X. Lin, F. Guo, J. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light. J. Mater. Sci. 56(3), 2226–2240 (2021). https://doi.org/10.1007/s10853-020-05436-2

    Article  CAS  Google Scholar 

  24. N. Güy, Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production. Appl. Surf. Sci. 522, 146442 (2020). https://doi.org/10.1016/j.apsusc.2020.146442

    Article  CAS  Google Scholar 

  25. L.J. Zhang, T.F. Xie, D.J. Wang, S. Li, L.L. Wang, L.P. Chen, Y.C. Lu, Noble-metal-free CuS/CdS composites for photocatalytic H2 evolution and its photogenerated charge transfer properties Int. J. Hydrog. Energy. 38, 11811–11817 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.115

    Article  CAS  Google Scholar 

  26. S.K. Lakhera, V.S. Vijayarajan, B.S. Rishi Krishna, P. Veluswamy, B. Neppolian, Cobalt phosphate hydroxide loaded g-C3N4 photocatalysts and its hydrogen production activity. Int. J. Hydrog. Energy. 45(13), 7562–7573 (2020). https://doi.org/10.1016/j.ijhydene.2019.07.202

    Article  CAS  Google Scholar 

  27. J. Pan, L. Wang, Y. Shi, L. Li, Z. Xu, H. Sun, F. Guo, W. Shi, Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics. Sep. Purif. Technol. 284, 120270 (2022). https://doi.org/10.1016/j.seppur.2021.120270

    Article  CAS  Google Scholar 

  28. H.Y. Hafeez, S.K. Lakhera, M.V. Shankar, B. Neppolian, Synergetic improvement in charge carrier transport and light harvesting over ternary InVO4-g C3N4/ rGO hybrid nanocomposite for hydrogen evolution reaction. Int. J. Hydrog. Energy. 45(13), 7530–7540 (2020). https://doi.org/10.1016/j.ijhydene.2019.05.235

    Article  CAS  Google Scholar 

  29. Z. Cai, Y. Zhou, S. Ma, S. Li, H. Yang, S. Zhao, X. Zhong, W. Wu, Enhanced visible light photocatalytic performance of g-C3N4/CuS p-n heterojunctions for degradation of organic dyes. J. photochem. Photobiol. A:chem. 348, 168–178 (2017). https://doi.org/10.1016/j.jphotochem.2017.08.031

    Article  CAS  Google Scholar 

  30. C.Y. Pei, Y.G. Chen, L. Wang, W. Chen, G.B. Huang, Step scheme Wo3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation. App. Surf Sci 535, 147682 (2021). https://doi.org/10.1016/j.apsusc.2020.147682

    Article  CAS  Google Scholar 

  31. F. Guo, Z. Chen, X. Huang, L. Cao, X. Cheng, W. Shi, L. Chen, Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light. Sep. Purif. Technol. 275, 119223 (2021). https://doi.org/10.1016/j.seppur.2021.119223

    Article  CAS  Google Scholar 

  32. H. Jing, R. Ou, H. Yu, Y. Zhao, Y. Lu, M. Huo, H. Huo, X. Wang, Engineering of g-C3N4 nanoparticles/WO3 hollow microspheres photocatalyst with Z-scheme heterostructure for boosting tetracycline hydrochloride degradation. Sep. Purif. Technol. 255, 117646 (2021). https://doi.org/10.1016/j.seppur.2020.117646

    Article  CAS  Google Scholar 

  33. Y. He, D. Wang, X. Li, Q. Fu, L. Yin, Q. Yang, H. Chen, Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight. Chemosphere 284, 131386 (2021). https://doi.org/10.1016/j.chemosphere.2021.131386

    Article  CAS  Google Scholar 

  34. P.S. Selvamani, J.J. Vijaya, L.J. Kennedy, A. Mustafa, M. Bououdina, P.J. Sophia, R.J. Ramalingam, Synergic effect of Cu2O/MoS2/rGO for the sonophotocatalytic degradation of tetracycline and ciprofloxacin antibiotics. Ceram. Int. 47(3), 4226–4237 (2021). https://doi.org/10.1016/j.ceramint.2020.09.301

    Article  CAS  Google Scholar 

  35. S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, R. Yuvakkumar, M. Thambidurai, G. Ravi, Synthesis and characterization of various transition metals doped SnO2@MoS2 composites for supercapacitor and photocatalytic applications. J. Alloys Compd. 853, 157060 (2021). https://doi.org/10.1016/j.jallcom.2020.157060

    Article  CAS  Google Scholar 

  36. L. Xiao, H. Chen, J. Huang, Visible light-driven photocatalytic H2-generation activity of CuS/ZnS composite particles. Mater. Res. Bull. 64, 370–374 (2015). https://doi.org/10.1016/j.materresbull.2015.01.008

    Article  CAS  Google Scholar 

  37. E.V. Siddhardhan, S. Surender, T. Arumanayagam, Degradation of tetracycline drug in aquatic environment by visible light active CuS/CdS photocatalyst. Inorg. Chem. Commun. 147, 110244 (2022). https://doi.org/10.1016/j.inoche.2022.110244

    Article  CAS  Google Scholar 

  38. J. Dang, J. Guo, L. Wang, F. Guo, W. Shi, Y. Li, W. Guan, Construction of Z-scheme Fe3O4/BiOCl/BiOI heterojunction with superior recyclability for improved photocatalytic activity towards tetracycline degradation. J. Alloys Compd. 893, 162251 (2022). https://doi.org/10.1016/j.jallcom.2021.162251

    Article  CAS  Google Scholar 

  39. J. Jin, M. Liu, L. Feng, H. Wang, Y. Wang, T.A.H. Nguyen, Y. Wang, J. Lu, Y. Li, M. Bao, 3D Bombax-structured carbon nanotube spongue coupling with Ag3PO4 for tetracycline degradation under ultrasound and visible light irradiation. Sci. Total Environ. 695, 133694 (2019). https://doi.org/10.1016/j.scitotenv.2019.133694

    Article  CAS  Google Scholar 

  40. V.H.T. Thi, B.K. Lee, Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J. Hazard. Mater. 324, 329–339 (2016). https://doi.org/10.1016/j.jhazmat.2016.10.066

    Article  CAS  Google Scholar 

  41. M. Zhang, C. Lai, B. Li et al., Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: kinetics, intermediates, and mechanism insight. J. Catal. 369, 469–481 (2019). https://doi.org/10.1016/j.jcat.2018.11.029

    Article  CAS  Google Scholar 

  42. Y. He, D. Wang, X. Li, Q. Fu, L. Yin, Q. Yang, H. Chen, Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight. Chemosphere 284, 131386 (2021). https://doi.org/10.1016/j.chemosphere.2021.131386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge, Dr. V. Sivamurugan, Assistant Professor, PG and Research Department of Chemistry, Pachaiyappa’s College, Chennai and R. Mahalakshmi, Assistant Professor, PG and Research Department of Physics, Aalim Muhammed Salegh College of Engineering, Chennai for supporting this research work.

Funding

The authors have no relevant funding to disclose.

Author information

Authors and Affiliations

Authors

Contributions

EV: Conceptualization, Methodology, Writing-original draft. TA: Conceptualization, Supervision, Writing-review & editing.

Corresponding author

Correspondence to T. Arumanayagam.

Ethics declarations

Conflict of interest

The author declared that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Consent to publish

The submitted work is original and has not been published or submitted elsewhere in any form or language.

Research involving human and animal rights participants

There is no research involving Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddhardhan, E.V., Steephen, A. & Arumanayagam, T. Effective and highly sunlight response g-C3N4/CuS heterojunction photocatalyst for the degradation of tetracycline antibiotic. J Mater Sci: Mater Electron 34, 1225 (2023). https://doi.org/10.1007/s10854-023-10649-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10649-7

Navigation