Skip to main content
Log in

Facile-prepared imidazole-based ionic liquid/CNT composites with high-electromagnetic wave absorption performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As a candidate of electromagnetic wave (EW) absorption materials (EAM), carbon nanotubes (CNT) possess stronger dielectric loss capacity for EM. However, the exorbitant conductivity of CNT could induce the impedance mismatch, leading to extreme EW reflections and poor EW absorption performance. In this paper, three imidazole-based ionic liquids (IMIL), 1-butyl-3-methylimidazolium tetrafluoroborate (BIMBF4); 1-butyl-3-methylimidazolium hexafluorophosphate (BIMPF6) and 1-propylsulfonic-3-methylimidazolium tosylate (PIMSO3TS), are combined with CNT to obtain the imidazole-based ionic liquids/CNT composites (IMIL/CNT) through the facile mixture. Remarkably, the IMIL not only optimize the CNT of impedance match but also dissipated the EM through ionic conductance and polarization loss. Based on these, three IMIL/CNT based EW absorbers composited with paraffin show favorable EW absorption performance. The minimum Reflection loss (RLmin) of the BIMBF4/CNT, PIMSO3TS/CNT, and BIMPF6/CNT based EW absorber with a thickness of 2.2–2.3 mm could reach − 46 dB, -45 dB and − 35 dB, respectively. The maximum effective absorbing bands (EABmax) of BIMBF4/CNT, PIMSO3TS/CNT and BIMPF6/CNT based EW absorbers are  4.7 GHz at 1.5 mm, 4.8 GHz at 1.8 mm and 4.8 GHz at 1.8 mm. This work paves a new way to improve the EW absorbing performance of carbon nanotubes. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Due to the nature of this research, participants of this study did not agree for their data to be shared publicly, so supporting data are not available.

References

  1. M. Zong, Y. Huang, H. Wu et al., Facile synthesis of RGO/Fe3O4/Ag composite with high microwave absorption capacity. Mater. Lett. 111, 188–191 (2013). https://doi.org/10.1016/j.matlet.2013.08.076

    Article  CAS  Google Scholar 

  2. M.Q. Ning, M.M. Lu, J.B. Li et al., Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7, 15734–15740 (2015). https://doi.org/10.1039/c5nr04670j

    Article  CAS  Google Scholar 

  3. M.M. Ghannam, Z.K. Heiba, M.M.S. Sanad et al., Functional properties of ZnMn2O4/MWCNT/graphene nanocomposite as anode material for Li-ion batteries. Appl. Phys. A 126, 1–9 (2020). https://doi.org/10.1007/s00339-020-03513-6

    Article  CAS  Google Scholar 

  4. R.S. Lankone, J. Wang, J.F. Ranville et al., Photodegradation of polymer-CNT nanocomposites: effect of CNT loading and CNT release characteristics. Environ. Sci. Nano 4(4), 967–982 (2017). https://doi.org/10.1039/c6en00669h

    Article  CAS  Google Scholar 

  5. D.J. Kwon, Z.J. Wang, J.Y. Choi et al., Damage sensing and fracture detection of CNT paste using electrical resistance measurements. Compos. Part B: Eng 90, 386–391 (2016). https://doi.org/10.1016/j.compositesb.2016.01.020

    Article  CAS  Google Scholar 

  6. Z. Zhang, Y. Zhang, X. Jiang et al., Simple and efficient pressure sensor based on PDMS wrapped CNT arrays. Carbon 155, 71–76 (2019). https://doi.org/10.1016/j.carbon.2019.08.018

    Article  CAS  Google Scholar 

  7. C. Hu, H. Liu, Y. Zhang et al., Tuning microwave absorption properties of multi-walled carbon nanotubes by surface functional groups. J. Mater. Sci. 54, 2417–2426 (2018). https://doi.org/10.1007/s10853-018-2895-y

    Article  CAS  Google Scholar 

  8. A. Ling, G. Tan, Q. Man et al., Broadband microwave absorbing materials based on MWCNTs’ electromagnetic wave filtering effect. Compos. Part B: Eng. 171, 214–221 (2019). https://doi.org/10.1016/j.compositesb.2019.04.034

    Article  CAS  Google Scholar 

  9. R.-B. Yang, P.M. Reddy, C.-J. Chang et al., Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties: role of carbon nanotube and polypyrrole content. Chem. Eng. J. 285, 497–507 (2016). https://doi.org/10.1016/j.cej.2015.10.031

    Article  CAS  Google Scholar 

  10. Y.-. Sun, W.-. Cui, J.-. Li et al., In-situ growth strategy to fabrication of MWCNTs/Fe3O4 with controllable interface polarization intensity and wide band electromagnetic absorption performance. J. Alloys Compd. 770, 67–75 (2019). https://doi.org/10.1016/j.jallcom.2018.08.106

    Article  CAS  Google Scholar 

  11. G. Li, L. Sheng, L. Yu et al., Electromagnetic and microwave absorption properties of single-walled carbon nanotubes and CoFe2O4 nanocomposites. Mater. Sci. Eng.: B 193, 153–159 (2015). https://doi.org/10.1016/j.mseb.2014.12.008

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Gao, X. Wu et al., Facile synthesis of Mn3O4 hollow polyhedron wrapped by multiwalled carbon nanotubes as a high-efficiency microwave absorber. Ceram. Int. 46, 1560–1568 (2020). https://doi.org/10.1016/j.ceramint.2019.09.124

    Article  CAS  Google Scholar 

  13. M. Zhou, Q. Yan, Q. Fu et al., Self-healable ZnO@ multiwalled carbon nanotubes (MW CNTs) /DA-PDMS nanocomposite via Diels-Alder chemistry as microwave absorber: a no vel multifunctional material. Carbon 169, 235–247 (2020). https://doi.org/10.1016/j.carbon.2020.07.003

    Article  CAS  Google Scholar 

  14. W. Ma, R. Yang, H. Xie et al., Facile preparation of aluminum nitride decorated multi- walled carbon nanotube for excellent microwave absorption,Journal. Mater. Sci. 5 6, 9807–9823 (2021). https://doi.org/10.1007/s10853-021-05913-2

    Article  CAS  Google Scholar 

  15. A. Zhang, M. Li, D. Wang et al., Enhanced electromagnetic wave absorption of polar absorber hybrids self-assembled by MWCNTs and sulfonated polystyrene microsphere. J. Mater. Sci. 55, 1637–1647 (2019). https://doi.org/10.1007/s10853-019-04061-y

    Article  CAS  Google Scholar 

  16. L. Kong, C. Wang, X. Yin et al., Electromagnetic wave absorption properties of a carbo n nanotube modified by a tetrapyridinoporphyrazine interface layer. J. Mater. Chem. C 5, 7479–7488 (2017). https://doi.org/10.1039/c7tc02701j

    Article  CAS  Google Scholar 

  17. Y. Li, A. Zhang, H. Lu et al., Effect of polar polymers of PEG and PVA on the enhanced microwave-absorbing properties of MWNTs. J. Phys. Chem. C 122, 16956–16963 (2018). https://doi.org/10.1021/acs.jpcc.8b04059

    Article  CAS  Google Scholar 

  18. Y. Zhang, A. Zhang, L. Ding et al., The effect of polymer spatial configuration on the microwave absorbing properties of non-covalent modified MWNTs,Composites Part. Appl. Sci. Manuf. 81, 264–270 (2016). https://doi.org/10.1016/j.compositesa.2015.11.020

    Article  CAS  Google Scholar 

  19. Z. Chen, N. Gao, Y. Chu et al., Ionic Network based on dynamic ionic liquids for electronic tattoo application. ACS Appl. Mater Interfaces 13, 33557–33565 (2021). https://doi.org/10.1021/acsami.1c09278

    Article  CAS  Google Scholar 

  20. Y. Liu, L. Hou, Y. Jiao et al., Decoupling of mechanical strength and ionic conductivity in zwitterionic elastomer gel electrolyte toward safe batteries. ACS Appl. Mater. Interfaces 13, 13319–13327 (2021). https://doi.org/10.1021/acsami.1c01064

    Article  CAS  Google Scholar 

  21. Z. Cao, Y. Xia, C. Chen, Fabrication of novel ionic liquids-doped polyaniline as lubricant additive for anti-corrosion and tribological properties. Tribol. Int. 120, 446–454 (2018). https://doi.org/10.1016/j.triboint.2018.01.009

    Article  CAS  Google Scholar 

  22. N. Sun, X. Gao, A. Wu et al., Mechanically strong ionogels formed by immobilizing ionic liquid in polyzwitterion networks. J. Mol. Liq. 248, 759–766 (2017). https://doi.org/10.1016/j.molliq.2017.10.121

    Article  CAS  Google Scholar 

  23. K. Shi, J. Luo, X. Huan et al., Ionic liquid-graphene oxide for strengthening microwave curing epoxy composites. ACS Appl. Nano Mater. 3, 11955–11969 (2020). https://doi.org/10.1021/acsanm.0c02511

    Article  CAS  Google Scholar 

  24. P.M.E.O. Mancini, C.M.K. Maria, Polar Diels-Alder reactions under microwave irradiation employing different heterocyclic compounds as Electrophiles[J]. Mini-Rev. Org. Chem. 16(6), 527–543 (2019). https://doi.org/10.2174/1570193X15666180608083925

    Article  CAS  Google Scholar 

  25. S. Mallakpour, Z. Rafiee, New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Prog. Polym. Sci 36(12), 1754–1765 (2011). https://doi.org/10.1016/j.progpolymsci.2011.03.001

    Article  CAS  Google Scholar 

  26. F. Yang, J. Gong, E. Yang et al., Microwave-absorbing properties of room-temperature ionic liquids. J. Phys. D 52, 155302 (2019). https://doi.org/10.1088/1361-6463/ab016c

    Article  CAS  Google Scholar 

  27. A.K. Takanori Fukushima, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science (2003). https://doi.org/10.1126/science.1082289

    Article  Google Scholar 

  28. J.B. Ducros, N. Buchtová, A. Magrez et al., Ionic and electronic conductivities in carbon nanotubes–ionogel solid device. J. Mater. Chem. 21, 2508–2511 (2011). https://doi.org/10.1039/c0jm02016h

    Article  CAS  Google Scholar 

  29. R. Matsuno, Y. Takagaki, T. Ito et al., Effect of ion-pair interaction energy and alkyl chain length on the dispersibility of carbon nanotubes in a conductive composite elastomer. ACS Appl. Polym. Mater 2, 1773–1780 (2020). https://doi.org/10.1021/acsapm.9b01215

    Article  CAS  Google Scholar 

  30. Y. Hu, P. Xu, H. Gui et al., Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos. Part A: Appl. Sci. Manuf. 77, 147–153 (2015). https://doi.org/10.1016/j.compositesa.2015.06.025

    Article  CAS  Google Scholar 

  31. S. Saeedirad, J. Seyed-Yazdi, S.H. Hekmatara, Decorating untreated carbon nanotubes with Fe3O4@SiO2 nanoparticles and its microwave absorption property. J. Alloys Compd. 793, 590–598 (2019). https://doi.org/10.1016/j.jallcom.2019.04.177

    Article  CAS  Google Scholar 

  32. Z. Jiao, W. Huyan, F. Yang et al., Achieving ultra-wideband and elevated temperature electromagnetic Wave absorption via constructing lightweight porous rigid Structure. Nano-Micro Lett. 14, 173 (2022)

    Article  CAS  Google Scholar 

  33. P. Liu, Z. Yao, V.M.H. Ng et al., Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A: Appl. Sci. Manuf 115, 371–382 (2018)

    Article  CAS  Google Scholar 

  34. P. Liu, Z. Yao, V. Ng et al., Facile synthesis of Ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption Performance. Compos. Part Appl. Sci. Manuf. 115, 371–382 (2018). https://doi.org/10.1016/j.compositesa.2018.10.014

    Article  CAS  Google Scholar 

  35. M.R. Jianbin Tang, Y. Shen, Poly(ionic liquid)s as optically transparent microwave-absorbing materials. Macromolecules 41, 493–496 (2008). https://doi.org/10.1021/ma071762i

    Article  CAS  Google Scholar 

  36. J. Gong, F. Yang, Q. Shao et al., Microwave absorption performance of methylimidazolium ionic liquids: towards novel ultra-wideband metamaterial absorbers. RSC Advances (2017). https://doi.org/10.1039/c7ra06709g

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant no. 51673154).

Author information

Authors and Affiliations

Authors

Contributions

CL: Conceptualization, Methodology, Investigation, Data curation, Writing –original draft. SZ: Data curation, Writing – review & editing. JY: Visualization, Investigation. JW: Writing – review & editing. BZ: Data curation. CX: Project administration, Funding acquisition.

Corresponding author

Correspondence to Chuanxi Xiong.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 884.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, S., Yi, J. et al. Facile-prepared imidazole-based ionic liquid/CNT composites with high-electromagnetic wave absorption performance. J Mater Sci: Mater Electron 34, 1306 (2023). https://doi.org/10.1007/s10854-023-10637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10637-x

Navigation